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C.1 Symbols 

Within this section, the following symbols are used with the dimensions specified below. 

 

Q~  Weld pass heat input into workpiece per unit length per unit thickness, 2mm/J],t/)v/q[(Q~ η=  

q   Weld torch arc power (current x closed circuit voltage) J/sec 

R Mean radius of pipe (or radius of chord for Pipe T-Butt), mm 

r Radius of brace in pipe T-Butt, mm 

0r  Dimensions of the yield zone for a thin plate, mm 

T Plate (or chord) thickness for T weld joint, mm 

t Plate or pipe thickness (or thickness of brace for Pipe T-Butt), mm 

v Weld torch advance rate, mm/sec 

W Width of the weld at surface, mm 

0y  Dimensions of the yield zone for a thick plate, mm 

z  Position through-thickness, mm 

rz  Depth of a repair weld, mm 

0z  Size of yield zone below repair weld, mm 

δ   Heat input sinusoid correlation factor for pipe butt weld Level 3 longitudinal stress 

ϕ   Heat input bending correlation factor for pipe butt weld Level 3 transverse stress 

η  Weld process efficiency  

θ   Heat input sinusoid correlation factor for pipe butt weld Level 3 transverse stress 

yσ  Typical1 room temperature yield strength of material, MPa.  For austenitic material, the typical 1% 
proof stress should be used.  For ferritic material the typical yield point or typical 0.2% proof stress is 
appropriate 

*
yσ  Lower of ),,( ywyp σσ  MPa 

+σy
 Greater of ),,( ywyp σσ  MPa 

ypσ  Parent metal typical yield strength, MPa 

ywσ  Weld metal typical yield strength, MPa 

L
Rσ  Longitudinal residual stress, MPa 

O,L
Rσ  Longitudinal residual stress at outer surface, MPa 

                                                      

1 Typical rather than lower bound room temperature yield strength properties should be used.  A typical value is defined to 
be a mean estimate of the yield strength, as used to construct the failure assessment diagram. 
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B,L
Rσ   Longitudinal residual stress at bore surface, MPa 

T
Rσ  Transverse residual stress, MPa 

O,T
Rσ  Transverse residual stress at outer surface, MPa 

B,T
Rσ  Transverse residual stress at bore surface, MPa 
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C.2 Introduction 

This section presents a compendium of recommended residual stress profiles for a range of different 
configurations of as-welded structural weldments. Section II.7 distinguishes between three types of through-
wall residual stress profile (Levels 1–3).  Level 1 profiles readily enable an initial conservative assessment of a 
defect to be made by assuming an uniform, tensile residual stress field equal in magnitude to the maximum 
yield stress of the plate or weld material (Section II.7.5.1).  Level 2 profiles provide a more detailed but 
conservative through-wall characterisation.  Level 3 profiles represent a more realistic estimate of the specific 
weld through-wall residual stress distribution based on experimental measurements  combined with detailed 
analysis.  A majority of the residual stress profiles recommended here are essentially upper bounds to 
available measured and predicted residual stress data, that is they are classified as Level 2 in Section II.7.  
Although these through-wall profiles do not represent realistic self-balancing stress distributions, they do give 
a starting point in the quantification of residual stresses that is less conservative than a Level 1 assumption, in 
almost all cases.  More realistic residual stress through-wall profiles (Level 3) for austenitic stainless steel pipe 
butt welds are included in Appendix C.2. 

A compendium of weld residual stress profiles supporting R6 assessments was first compiled in 1991 [C.1].  
Since then the compendium has been continually reviewed and updated [C.2], [C.3] and [C.4].  The review 
performed under the EC funded SINTAP project [C.4] provided a consensus of residual stress profiles based 
on [C.3] and BS7910 [C.5].  Subsequently, the recommended distributions for ferritic and austenitic steel pipe 
girth welds have been revised in BS7910 Amendment No.1 [C.6].  A further literature review has been 
performed since the release of [C.4] and [C.6], and the profiles for ferritic plate butt welds and pipe butt welds 
updated.  This section provides the latest recommended residual stress profiles for the fracture assessment of 
defects in welded structures. 

Following a discussion of stress categorisation in Section C.3, and the methodology used to develop the Level 
2 profiles in Section C.4, the compendium of upper bound profiles is set out in Sections C.5-13, supported by 
figures for each geometry considered. The geometries considered are: 

  C.5 Plate Butt and Pipe Seam Welds 

  C.6 Plate T-Butt Welds 

  C.7 Pipe Butt Welds 

  C.8 Pipe T-Butt Welds 

  C.9 Set-in Nozzles 

  C.10 Set-on Nozzles 

  C.11 Repair Welds 

  C.12 Transition Welds 

  C.13 Weld T-Intersections 

For some of these profiles, it is necessary to calculate the parameters of the yielded zone at the weld and 
these calculations are set out in Appendix C.1.  Some more realistic through-wall profiles (Level 3) for 
austenitic stainless steel pipe butt welds are included in Appendix C.2.  Section C.14 contains references cited 
in the text.  However, there is a much more extensive bibliography on which the profiles are based and, for 
completeness, this is included here in Appendix C.3. 
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C.3  Stress Categorisation 

The literature surveys undertaken for the assembly of this compendium indicate that residual stress 
distributions are made up of two components.  The first is directly attributable to the welding process, arising 
due to the thermal contractions and phase changes that occur in the weldment.  The other component arises 
due to mismatches and restraints within the structure itself.  This, second component is obviously variable 
from case to case. 

Section I.5 draws attention to the classification of stresses for use in assessments and requires that all 
stresses should be classified into primary, ,σp and secondary, sσ , stresses. Primary stresses are those which 
contribute to collapse, such as applied loads or pressures. If there is significant elastic follow-up within a 
structure, then some displacement-controlled stresses must also be classified as primary stresses.  
Secondary stresses are those that are self equilibrating across the section, that is, the net force or bending 
moment across a section due to the secondary stresses is zero. 

Wherever possible, the residual stress distributions given in this section exclude long-range structural restraint 
effects. If long-range residual stresses that exhibit significant elastic follow-up are present, they must be 
considered separately, and, if necessary, treated as primary stresses.  Section II.7.4.1 provides detailed 
guidance on the classification of weld residual stresses for fracture assessment. 

C.4 Methodology Used to Produce the Compendium 

In developing the Level 2 profiles summarised below in Sections C.5-13, data obtained for each geometry 
were fitted to upper bound tensile profiles.  As a result, the quoted profiles are not, in general, self-
equilibrating across the weld section.  However, the individual profiles from which the sum of the data was 
obtained were self equilibrating so that the profiles given in this compendium may be treated as conservative 
estimates of secondary stresses in an assessment. 

In Sections C.5-13, equations for the upper bound fits are presented, but, due to the quantity and scatter of 
data, the original data points are not shown. 

The residual stress profiles are given as transverse stresses, T
Rσ (stresses normal to the weld run) and 

longitudinal, L
Rσ  (stresses parallel to the weld run).  The variation of stresses with through wall distance and 

normal distance from the weld centre-line are shown.  Stresses acting in the through thickness direction are 
assumed to be negligible. 

Two approaches for defining Level 2 residual stress profiles are provided in Sections C.5-13 depending on the 
available information about welding conditions. 

1) If the welding conditions are known or can be estimated, then residual stress profiles given in this section 
may be used in association with the size parameters of the plastic zone  (r0, y0) given in Appendix C.1. 

2) If the welding conditions are unknown, then the given polynomial functions should be used. 

The as-welded Level 2 residual stress profiles for ferritic steel joints are valid for the range of thickness, yield 
strength and heat input given in Table C.1. 

Longitudinal residual stresses are normalised with respect to the greater of the typical room temperature yield 
strengths of the weld or plate materials, +σy .  Transverse residual stresses are normalised with respect to the 

lower of the typical room temperature yield strengths of the weld or plate materials, *
yσ , with the exception of 

the three cases listed below: 
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(i) defects at repair welds; 

(ii) defects at weld intersections; 

(iii) shallow defects with a depth no greater than one weld run. 

In these cases, transverse residual stresses for fracture assessment should be based on the greater of the 
parent or weld metal yield strength. 

When interpreting the profiles for austenitic steels, it is conservative to use the room temperature 1% proof 
stress properties.  This allows for material work hardening and the large variability observed in 0.2% proof 
stress properties for austenitic materials. 

Once the room temperature residual stress distribution has been defined, Section II.7.3 describes how to 
account for mechanical stress relief, the assessment temperature and historical operation at high 
temperatures in the fracture assessment. 

The through thickness stress profiles are normalised with respect to plate thickness. 

For each geometry considered,  there are associated Figures (a) to (d)  which represent the variation of 
residual stresses as follows: 

 (a)  variation of longitudinal residual stresses at the surface; 

 (b)  variation of longitudinal residual stresses through the thickness; 

 (c) variation of transverse residual stresses at the surface; 

 (d)  variation of transverse residual stresses through the thickness. 

A schematic illustration of the weld geometry is shown in each figure, which illustrates the longitudinal and 
transverse directions and various dimensional parameters that are used in Figures (a) to (d).   

For all geometries, the figures, in conjunction with the comments in the appropriate part of the following text, 
should provide sufficient information to generate a conservative residual stress profile. 

For fracture assessment where adequate reserve margins are not obtained using the upper bound Level 2 
profiles recommended in Sections C.5-13, more detailed (Level 3) residual stress distributions should be 
determined, see Section II.7.5.3. For austenitic stainless steel pipe butt welds, Level 3 through-wall profiles 
can be estimated using the formulation described in Appendix C.2.  For other weld geometries, the references 
listed in Appendix C.3 can be consulted to help characterise and substantiate more realistic Level 3 profiles 
for the specific welded joint, materials and welding conditions of interest.  

C.5 Plate Butt and Pipe Seam Welds. 

The depth, z, used to define the through-wall profiles, is measured from the surface on which the last bead is 
deposited. 

C.5.1 Longitudinal Residual Stresses 

Surface profiles based on the recommendations of Leggatt [C.7] are shown in Figure C.1(a) for ferritic, 
austenitic and aluminium material, and for single and double sided welds.  The calculation of the parameters 
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0r  and 0y  is given in Appendix C.1.  If the weld is asymmetric, side one is the side with the widest weld face 
(i.e. W1>W2). 

The through thickness profile is shown in Figure C.1(b) for ferritic and austenitic steels. The recommended 
profiles are: 

Ferritic Steels: 

)t/z(/ yw
L
R σσ = 1 

Austenitic Steels 

)t/z(/ yw
L
R σσ = 0.95 + 1.505(z/t) - 8.287(z/t)2 + 10.571(z/t)3 - 4.08(z/t)4 

C.5.2 Transverse Residual Stresses 

The surface profiles are shown in Figure C.1(c).  For pipe seam welds and unrestrained  plates the profile is 
based on the recommendations of Leggatt [C.7].  For restrained plates the profile of Mathieson [C.1] is 
retained. 

The recommended transverse through thickness profile is given in Figure C.1(d).  This profile is an upper 
bound to data obtained from both ferritic and austenitic steels. 

Ferritic and Austenitic Steels: 

)t/z(/ *
y

T
R σσ =1-0.917(z/t)-14.533(z/t)2+83.115(z/t)3-215.45(z/t)4+244.16(z/t)5-96.36(z/t)6 

C.6 Plate T-Butt welds 

C.6.1 Longitudinal Residual Stresses 

The longitudinal surface profiles recommended by Leggatt [C.7] are shown in Figure C.2(a) for ferritic, 
austenitic and aluminium material and for two different weld preparations.  The calculation of the parameters 
r0 and y0 is given in Appendix C.1.  If the weld is asymmetric, side one is the side with the widest weld face 
(i.e. W1>W2). 

The through thickness profile is shown in Figure C.2(b), where the parameter ro is calculated according to 
Appendix C.1.  If the welding conditions are unknown, then the following profile may be used for ferritic steel: 

Ferritic Steel 

L
Rσ /σyw(z/t) = 0.75 + 4.766(z/t) - 26.696(z/t)2 + 38.11(z/t)3 - 16.82(z/t)4 

C.6.2 Transverse Residual Stresses 

For transverse surface stresses the profile of Mathieson [C.1] is still retained.  Figure C.2(c) shows the 
recommended surface profile, where W is defined in Figure C.2(a). 
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Figure C.2(d) shows the through wall distribution, where the parameter 0r  is calculated according to Appendix 
C.1. 

C.7 Pipe Butt Welds 

There have been a number of proposals in structural integrity procedures and published compendia for the 
through-wall residual stress profiles to use in fracture assessments for pipe butt welds.  The upper bound 
(Level 2) residual stress profiles recommended here for stainless steel welds are supported by extensive 
measurements and numerical predictions [C.8].  More realistic through-wall residual stress profiles (Level 3) 
are defined in Appendix C.2 for improved fracture assessments of stainless steel pipe welds.  

C.7.1 Longitudinal Residual Stresses 

The longitudinal surface profiles of Leggatt [C.7] for ferritic steel, austenitic steel and aluminium are 
recommended for single-sided and double-sided welds, see Figure C.3(a).  The calculation of the parameters 
r0 and y0 is given in Appendix C.1.  If the weld is asymmetric, side one is the side with the widest weld face 
(i.e. W1>W2). 

The longitudinal through wall residual stress distribution for both ferritic and austenitic steels is given as a 
linear profile defined by O,L

Rσ  at the outer surface and B,L
Rσ  at the bore, see Figure C.3(b), where the surface 

values are defined by 

 A

 

ywb
B,L

R

yw
O,L

R

σ=σ

σ=σ

 

where:   Ab = 1    0<t<15mm 

   Ab = 1 - 0.0143(t-15)  15 mm < t ≤ 85 mm 

   Ab = 0    t > 85 mm 

For a pipe thickness of less than 15mm, a through thickness tensile yield stress is obtained.  The tensile 
stress at the bore decreases with increasing pipe thickness to a value of zero for a pipe thickness of 
approximately 85mm. 

C.7.2 Transverse Residual Stresses 

No detailed profiles are proposed for surface transverse residual stresses because there are insufficient data 
available and they are geometry sensitive.  In the interim, a uniform stress T

Rσ  equal to *
yσ , the lower of the 

parent or weld metal yield strength, should be considered. 

Through-thickness transverse residual stress profiles recommended for ferritic and austenitic steel single-
sided welds (made from the outside) are depicted in Figure C.3(d).  The profiles are defined in terms of the 
fractional distance from the bore, z/t, and are dependent on the weld electrical heat input per unit run length 
per unit thickness, [(q/v)/t], for the largest weld run where: 

 q = welding torch arc power (current x closed circuit voltage), J/sec 

 v = weld torch advance rate, mm/sec 
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 z = distance from inner surface of pipe, mm 

 t = pipe thickness, mm 

For high heat input ferritic and austenitic steel welds where [(q/v)/t]>120 J/mm2 

])t/z(88.1)t/z(06.3)t/z(22.000.1[ 32*
y

T
R +−−σ=σ  

For medium heat input ferritic steel welds where 50 J/mm2<[(q/v)/t]≤ 120 J/mm2 

])t/z(03.7)t/z(93.16)t/z(53.13)t/z(43.400.1[ 432*
y

T
R +−+−σ=σ  

For low heat input ferritic steel welds where [(q/v)/t]≤ 50 J/mm2, and for medium/low heat input austenitic steel 
welds where [(q/v)/t]≤ 120 J/mm2 

])t/z(18.11)t/z(68.28)t/z(30.24)t/z(80.600.1[ 432*
y

T
R +−+−σ=σ  

If the heat input is uncertain, an estimate for stainless steel manual metal arc welds can be based on the 
deposited weld metal cross-section area and the number of passes, see [C.8].  Otherwise the low heat input 
profiles provide a conservative bound. 

C.8 Pipe T-butt welds 

The term “Pipe T-butt welds” includes pipe on plate welds, and pipe on pipe welds (tubular T and Y nodes).  
The surface profiles are the same as those recommended for plate T-butt welds.  The profiles for the pipe on 
pipe geometry are for the stresses in the chord and not the brace member (see Figures C.4(b) and C.4(d)).  

The data used to generate the pipe T-butt weld profiles were obtained from geometries where the ratio of the 
chord thickness to the brace thickness varied from 1.375 to 2.  That is, the ratio t/T (see Figures C.4(b) and 
C.4(d)) varied from 1.375 to 2.  For cases where t/T < 1.375, a uniform tensile residual stress of yield 
magnitude should be assumed.  For cases where t/T > 2, the profiles for plate T-butt welds are recommended.  
The R/r ratios for the pipe on pipe geometries varied from 1.5 to approximately 2.  The profiles recommended 
here should be used with caution outside this range.  If the radii differ by a large amount (say a factor of 5) 
then the profiles presented for plate T-butt welds should be considered as an alternative. 

C.8.1 Longitudinal Residual Stresses. 

The surface profile for ferritic steel, austenitic steel and aluminium is shown Figure C.4(a).  The calculation of 
the parameters 0r  and 0y  is given in Appendix C.1. 

The through thickness variation of longitudinal residual stresses away from the weld centre line is given in 
Figure C.4(b).  This is an upper bound to data obtained from ferritic steels in pipe on plate and tubular T and Y 
node geometries.  Caution should be used in applying this distribution to austenitic welds: 

yw
L
R σ/σ (z/t) = 1.025+3.478(z/t)-27.861(z/t)2+45.788(z/t)3-21.8(z/t)4 

C.8.2 Transverse Residual Stresses 

The surface profile given in Figure C.4(c) is the same as that presented in Figure C.2(c). 
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The through thickness variation of transverse residual stresses away from the weld toe is given in Figure 
C.4(d).  This is an upper bound to data obtained from ferritic steels in pipe on plate and tubular T and Y node 
geometries.  Caution should be used in applying this distribution to austenitic welds since no data from 
austenitic steel were obtained: 

*
y

T
R σ/σ  (z/t) = 0.97+2.327(z/t)-24.125(z/t)2+42.485(z/t)3-21.087(z/t)4 

C.9 Set in Nozzle 

The surface residual stress profiles (Figures C.5(a) and C.5(c)) are based on the recommendations of Leggatt 
[C.7].  The stresses on line AiAo are based on the general observation that longitudinal stresses in butt welds 
can be of weld yield stress magnitude throughout the thickness.  This agrees with the Sanderson [C.2] 
recommendations for cylinder-to-dome welds.  The distributions for longitudinal and transverse stresses on 
line BiBo are the same as those recommended for plate T-butt welds.  This distribution only applies for defects 
initiating at or near the toe of the weld. 

C.9.1 Longitudinal Residual Stresses 

The surface profile for ferritic steel, austenitic steel and aluminium is shown in Figure C.5(a).  The calculation 
of the parameters 0r  and 0y  is given in Appendix  C.1. 

The through thickness profiles are shown in Figure C.5(b) for the nozzle (Line BiBo) and vessel (Line AiAo).  
The calculation of the parameter 0r  is given in Appendix C.1. 

C.9.2 Transverse Residual Stresses 

There is currently no profile proposed for surface transverse residual stress because there are insufficient 
data available and it is geometry sensitive.  For the interim, a uniform stress T

Rσ  equal to the lower of the 
parent or weld metal yield strength should be considered. 

The through thickness profiles are shown in Figure C.5(d) for the nozzle (Line BiBo) and Vessel (Line AiAo).  
The distribution of transverse stress on AiAo is based on the recommendation in [C.2] for a nozzle-cylinder 
weld. 
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C.10 Set on Nozzle 

The surface residual stress profiles (Figures C.6(a) and 6(c)) are based on [C.7].  The stresses on line AiAo 
are based on the general observation that longitudinal stresses in butt welds can be of weld yield stress 
magnitude throughout the thickness.  This agrees with the Sanderson [C.2] recommendations for cylinder-to-
dome welds.  The distributions for longitudinal and transverse stresses on line BiBo are the same as those 
recommended for plate T-butt welds.  This distribution only applies for defects initiating at or near the toe of 
the weld. 

C.10.1 Longitudinal Residual Stresses 

The surface profile for ferritic steel, austenitic steel and aluminium is shown in Figure C.6(a).  The calculation 
of the parameter 0y  is given in Appendix C.1. 

The through thickness profiles are shown in Figure C.6(b) for the nozzle (Line AiAo) and vessel (Line BiBo).  
The calculation of the parameter 0r  is given in Appendix C.1. 

C.10.2 Transverse Residual Stresses 

There is currently no profile proposed for surface transverse residual stress because there are insufficient 
data available and it is geometry sensitive.  For the interim, a uniform stress T

Rσ  equal to the lower of the 
parent or weld metal yield strength should be considered. 

The through thickness profiles are shown in Figure C.6(d) for the nozzle (Line AiAo) and vessel (Line BiBo).  
The calculation of the parameter 0r  is given in Appendix C.1. 

C.11 Repair Welds 

Repair welds are usually introduced into structures, either to remedy initial fabrication defects found in 
castings or welds by routine inspection, or to rectify in-service degradation of components. Residual stresses 
introduced by deep repair welds tend to dominate any weld residual stresses remaining from an original weld, 
in the vicinity of the repair.  Therefore, the recommended profiles for repair welds that follow can often be used 
for fracture assessment irrespective of the fabrication history.  However, when the significance of the original 
residual stress field or original weld metal properties is uncertain, a sensitivity fracture assessment should be 
performed using a residual stress profile for the original weld.     

The sizes of repairs can range from being shallow and short, to deep and long, sometimes penetrating the 
wall or extending along the entire length of an original weld.  The repairs can be completely embedded in an 
original weld, transversely offset from the original weld centre-line, or can transversely span and encompass 
the entire original weld. 

The information presented here is generally applicable to short repair welds.  As short repairs tend to induce 
higher residual stresses than long repairs, the recommended profiles should be bounding for repairs of all 
lengths.  The profiles may be excessively conservative for deep repairs centrally embedded in the original 
weld and extending the full length of the weld.  In this case, the residual stress profile for the original weld is 
likely to be more appropriate.   

The recommended transverse and longitudinal through-thickness residual stress profiles, which are identical 
to each other, are illustrated in Figures C.7(b) and (d) and can be used for any length of repair.   
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The surface profile presented in Figure C.7(a) is applicable to short repairs.  The surface profile in Figure 
C.7(c) must be used only for a full length repair. 

C.11.1 Longitudinal Residual Stresses 

The recommended surface profile for ferritic steel, austenitic steel and aluminium is given in Figure C.7(a). 
The calculation of the parameters r0 and y0 is given in Appendix C.1. 

The through thickness profile is given in Figure C.7(b).  Over the depth of the repair, zr, the stress should be 
taken as the greater yield stress of the parent plate, original weld or repair weld.  Below the repair, the residual 
stress reduces linearly with distance to zero at a distance 0z  below the root of the repair. The distance 

0z defines the size of the yield zone below the repair and is related to the heat input of the repair weld root 
passes. 

+
y

L
R σ/σ (z/t) = 1   for z < zr   

+
y

L
R σ/σ (z/t) = (z0+zr-z)/ z0  for zr < z < (zr+z0) 

+
y

L
R σ/σ  (z/t) = 0  for z > (zr+z0) 

where  zr = the depth of the repair, mm 

 z0 = r0 as defined by Appendix C.1 equation (a), substituting the yield stress, *
yσ  (equal to the lower of 

the parent or weld metal typical yield strength) for ypσ . 

C.11.2 Transverse Residual Stresses 

The recommended surface profile for ferritic steel is given in Figure C.7(c).  The through thickness profile is 
given in Figure C.7(d).  Over the depth of the repair, zr, the stress should be taken as the greater yield stress 
of the parent plate, original weld or repair weld.  Below the repair, the residual stress reduces linearly with 
distance to zero at a distance z0 below the root of the repair. The distance z0 defines the size of the yield zone 
below the repair and is related to the heat input of the repair weld root passes. 

+
y

T
R σ/σ (z/t) = 1 for z < zr   

+
y

T
R σ/σ (z/t) = (z0+zr-z)/ z0  for zr < z < (zr+z0)  

+
y

T
R σ/σ  (z/t) = 0 for z > (zr+z0) 

where  zr = the depth of the repair, mm 

 z0 = r0 as defined by Appendix C.1 equation (a), substituting the yield stress, *
yσ  (equal to the lower of 

the parent or weld metal typical yield strength) for ypσ . 
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C.12 Transition Welds 

Very little information was found concerning residual stresses in transition welds.  The only references that 
were found concerned a pipe butt transition weld and a nozzle to safe end transition weld.  The surface 
profiles shown in Figures C.8(a) and C.8(c) are bounded by the surface profiles of normal pipe butt welds (see 
Figures C.4(a) and C.4(c)).  In considering transition welds of other geometries, it is suggested that the 
surface profile associated with that particular geometry for austenitics may be used with caution.  As for the 
distributions in Figures C.8(a) and C.8(c), the residual stress in the ferritic material will be zero for all other 
geometries. 

As a further refinement, the longitudinal residual stress in the ferritic parent plate along the austenitic-ferritic 
fusion boundary might be considered to be zero.  Also, the transverse residual stress in the ferritic parent 
plate might be considered to fall off to zero within one plate thickness from the fusion boundary.  Caution 
should be used with this approach, however, since there are no supporting data. 

C.13 Weld T Intersections 

The only information that could be found concerning weld intersection residual stress profiles concerned the 
stresses at the intersection itself.  At any intersection, one weld must be continuous and one weld must 
terminate in order to join or cross the other (continuous) weld.  Two treatments are suggested for the 
assessment of residual stress: 

If the terminating weld is completed first, which is the normal practice, then the intersection has no 
particular significance and each weld is treated as it normally would be for the relevant geometry (i.e. the 
effect of the intersection should be ignored). 

If the terminating weld is completed last, than the residual stress profiles must be assumed to be uniform, 
tensile through the thickness and of weld metal yield stress magnitude. 
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Table C. 1 Validity ranges for as-welded residual stress distributions in ferritic steels 

Geometry Thickness 
(mm) 

Yield 
Strength 
(MPa) 

Electrical Heat Input per Unit 
Length (KJ/mm) 

Plate Butt Welds 24 - 300 310 - 740 1.6 – 4.9 
Pipe Circumferential Butt Welds 9 - 84 225 - 780 0.35 – 1.9 
Pipe Seam Welds 50 - 85 345 - 780 Not known 
T butt Welds 25 - 100 375 - 420 1.4 
Tubular and pipe to plate welds 22 - 50 360 - 490 0.6 – 2.0 
Repair Welds 75 - 152 500 - 590 1.2 – 1.6 
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Figure C.1 - Plate butt and pipe seam welds 

Material:  Ferritic and Austenitic steels and Aluminium (only (a)) 

Geometry 

W 
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Figure C.1 - (cont) 
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Figure C.2 - Plate T-butt welds 

Material:  Ferritic and Austenitic steels and Aluminium (only (a)) 

Geometry 

(a) Longitudinal Surface Residual Stress, L
Rσ  
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Figure C.2 - (cont) 
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Figure C 3 - Pipe butt welds 

Material: Ferritic, Austenitic Steels and Aluminium (only (a)) 

Geometry 

(a) Longitudinal Surface Residual Stress, L
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Distribution 

(c) Transverse Surface Residual Stress, T
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Figure C.3 - (cont) 
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Figure C.4 - Pipe-T-butt welds 

Material: Ferritic, Austenitic Steels (caution for (b), (c), (d)) and Aluminium (only 
(a)) 

(a) Longitudinal Surface Residual Stress, L
Rσ  

Distribution 
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Figure C.4 - (cont) 

(c) Transverse Surface Residual Stress, T
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Figure C.5 - Set-in nozzle 

Material: Ferritic, Austenitic Steels and Aluminium 

(a)  Longitudinal Surface Residual Stress,  L
Rσ
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Figure C.5 - (cont) 
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Figure C.6 - Set-on nozzle 

 
 

Material: Ferritic, Austenitic Steels and Aluminium 
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Figure C.6 - (cont) 
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Figure C. 7 - Repair welds 

Material: Ferritic, Austenitic Steels and Aluminium (a) 

  Ferritic Steels (b), (c), (d) 

Geometry 

(a) Longitudinal Surface Residual Stress, L
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Figure C.7 - (cont) 
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Figure C.8 -  Transition welds 
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Figure C.8 - (cont)
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Appendix C.1 Calculation of the Dimensions of the Yielded Zone 

The calculations of the parameters, r0 and y0, which define the size of the yield zone at the weld, are based on 
the recommendations of Leggatt [C.7] for surface residual stress profiles. 

If r0 ≤  t, where t is the plate thickness (mm): 

ν
η

σ
=

q.Kr
yp

0      (a) 

0r   = radius of yield zone, mm 

K  = a material constant, Nmm/J (see below) 

σyp = yield or 0.2% proof strength of parent metal, N/mm2 

q  = arc power = IV, J/sec 

I  = current, A 

V  = voltage, V 

ν  = weld travel speed, mm/sec 

η = process efficiency (fraction of arc power entering plate as heat) 
 

In general, the thick plate formula is applicable where the weld bead dimensions are small compared with the 
plate thickness, for example at a multi-pass weld with many passes, or at a small single-pass fillet weld on 
thick plate. 

If 0r  > t 

t
q.K033.1y

yp
0 ν

η
σ

=      (b) 

In a butt weld, t is the plate thickness (mm).  In a T-joint between a base plate of thickness tb and an attached 
plate of thickness ta, t is taken as (tb + 0.5ta).  In a corner joint with the same definitions of ta, t is taken as 
0.5(ta + tb). 

Equation (b) applies if 0y  > 1.033 t. If 0y  < 1.033t, equation (a) is used.  In general, equation (b) is applicable 
where the weld bead dimensions are comparable with the plate thickness, for example at single pass or two 
pass butt welds. 

Material Constant and Process Efficiency 
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K is defined as follows: 

K=2αE/(eπρc) (c) 

where; 

 

α  = coefficient of thermal expansion, oC-1 

E = Young’s modulus, N/mm2  

e  = 2.718 

ρ = density, kg/mm3 

c = specific heat, J/kgoC 

The material properties are taken at ambient temperature ( C20 ).  Typical values of the relevant properties 
are listed in Table C.1.  Taking a typical value of process efficiency, η= 0.8, gives the following values of Kη: 

Ferritic steels,     Kη = 122 Nmm/J 

Austenitic stainless steels,   Kη = 161 Nmm/J 

Aluminium alloys,   Kη = 131 Nmm/J 

 

 Table C. 2 Typical material properties 

 Property Ferritic 
Steels 

Austenitic 
Stainless Steels 

Aluminium Alloys

coefficient of thermal expansion, α, oC-1 12 x 10-6 16 x 10-6 24 x 10-6 

Young’s modulus, E, N/mm2 207 000 193000 70 000 

Volumetric specific heat, ρc, Jmm3/oC 0.0038 0.0036 0.0024 

K=2αE/(eπρc), Nmm/J 153 201 164 
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Appendix C.2 More Realistic Level 3 Weld Residual Stress Profiles for Austenitic Stainless 
Steel Pipe Butt Welds 

This appendix defines validated Level 3 (more realistic) through-wall transverse and longitudinal residual 
stress profiles for butt welds in unrestrained austenitic stainless steel pipes [C.8].  The formulations capture 
the underlying through-wall weld residual stress distribution and therefore can be used in fracture 
assessments for structurally significant defects.  Moreover, the approximations can be decomposed into 
membrane, bending and self-equilibrated components to aid stress classification [C.8].   

The formulations take account of the arc-welding process by using the net heat input per unit thickness per 
unit run length to the workpiece, Q~ , as the controlling parameter, defined by: 

( )[ ]t/v/qηQ~ =  

where η = weld process efficiency  

q = weld torch arc power (current x closed circuit voltage) J/sec 

v = weld torch advance rate, mm/sec 

t = pipe thickness, mm 

Typical values of weld process efficiency are η = 0.8 for manual metal arc weld and η = 1.0 for submerged arc 
weld, see European Standard EN 1011-1:1998 [C.9].  If the weld torch arc power is unknown, an estimate for 
manual metal arc welds can be based on the deposited weld metal cross-section area and the number of 
passes, see [C.8]. 

The Level 3 formulations are validated for non-stress relieved girth welds having the following characteristics: 
over-matched weld material tensile properties, a pipe wall thickness in the range 16mm to 110mm and R/t 
between 1.8 and 25, single ‘J’, narrow gap or double ‘V’ preparations (with external ‘V’ heat input dominance), 
manual metal arc, submerged arc and tungsten inert gas weld processes, and electrical heat inputs, (q/v), in 
the range 1.0 to 2.4 KJ/mm.   

The recommended Level 3 profiles do not always capture very localised stress variations (short-range, high-
order self-equilibrated stresses), that often arise from weld bead deposition lay-up effects or geometric 
singularities at the weld root and weld toe.  These are not expected to influence fracture from structurally 
significant defects, that is those having a through-wall dimension greater than the characteristic wavelength of 
any local stress perturbation of potential concern.  They are also unlikely to lead to failure arising from any 
defects that advance by ductile fracture mechanisms.  However, high magnitude tensile near-surface stress 
fluctuations may significantly influence fracture assessments of shallow defects (<0.1t through-wall extent) or 
surface points of surface-breaking defects, where stable ductile tearing cannot be claimed or where the 
material fails by a brittle fracture mechanism such as cleavage.  They will also affect integrity assessments of 
fatigue crack initiation and short crack growth.  For these cases, the profiles can be modified by setting the 
surface stresses equal to the appropriate material yield stress (1% proof stress) and linearly reducing the 
stress to the formulation value at a depth of 0.1t below the surface [C.8].  This approach has the advantage 
that the surface values of the through-wall stress distribution match the surface residual stress profiles 
recommended in Section C.7.  The disadvantage is that modified axial stress profiles are no longer in axial 
force equilibrium and therefore cannot be readily de-convoluted into membrane, bending and self-equilibrating 
components.  The profiles will also be less smooth for some cases, making it more difficult to use weight 
function methods for stress intensity factor determination.  Shallow defects may be influenced by constraint 
and statistical crack size effects, see Sections II.2 and III.7, which will act to increase the fracture toughness.  
These features of the material response may be used in assessments to mitigate the impact of very localised 
residual stresses on shallow defects. 
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C.15   Additional Information 

This section provides additional information on the residual stress profiles of laser beam (LBW) and friction stir 
welded (FSW) Al-alloys and laser beam welded steel plates. This informative section aims to provide recent 
information on the residual stress distributions obtained for thin-walled Al-alloy plates and 25 mm thick steel 
plates. 

C.15.1 Residual Stresses in Laser and Friction Stir Welded Al-Alloy Plates 
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Figure C. 9 – The residual stress distributions across butt-joint of LBW from Al-alloy 6056-T4 (As-
welded), 3.2 mm thick (Ref. P. Staron, W.V. Vaidya, M. Kocak, GKSS, IDA Project, 2005) 
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Figure C. 10 – The residual stress distributions across butt-joint of LBW from Al-alloy 6056-T6 (after 
PWHT of Fig.C17 weld to T6 condition), 3.6 mm thick (Ref. P. Staron, W.V. Vaidya, M. Kocak, GKSS, 

IDA Project, 2005)
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Figure C. 11 – The residual stress distributions across butt-joint of LBW from Al-alloy 6056-T78 (after 
PWHT of Fig.C17 weld to T78 condition), 3.6 mm thick (Ref. P. Staron, W.V. Vaidya, M. Kocak, GKSS, 

IDA Project, 2005) 
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Figure C. 12 – The residual stress distributions across butt-joint of LBW from Al-alloy 6056-T6 (As-
welded), 3.2 mm thick (Ref. P. Staron, W.V. Vaidya, M. Kocak, GKSS, 2005) 
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Figure C. 13 – The residual stress distributions across butt-joint of LBW from Al-alloy 6056-T6 (As-
welded), 6.0 mm thick (Ref. P. Staron, W.V. Vaidya, M. Kocak, GKSS, 2005) 
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Figure C. 14 – The residual stresses across a 3.2 mm thick FSW butt-joint of Al-alloy 2024-T351, where 
σx = longitudinal stress and σy = transverse stress.( Ref. P. Staron, M. Kocak, GKSS, 2005). 
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Figure C. 15 – The residual stress distributions across butt-joint of FSW from Al-alloy 2024-T351, 
6.3mm thick, where σx = longitudinal stress and σy = transverse stress (Ref. S. Williams, BAE 

Systems, UK, P. Staron, M. Kocak, GKSS, 2004) 
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Figure C. 16 – The residual stress distributions across short distance T-joint of LBW from Al-alloy 
6056-T6, 6.0 mm thick base metal and 2.0 mm clip part (Ref. F.S. Bayraktar, P. Staron, M. Kocak, A. 
Schreyer, GKSS, 2006) 
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C.15.2 Laser Welded Steel Plates 

This part contains data and charts relating to the distribution of residual stresses in laser-welded steel plates. 
The data presented here were originally provided by Shuwen Wen (Corus RD&T, Swinden Technology 
Centre) in 2003 in a paper "Residual Stress in Laser Welds: Measurement and Modelling", which described 
the predictions from 2D generalised plane-strain finite element models of single-pass and two-pass laser butt 
welds in 25 mm steel plate typical of products supplied to EN10025 grade S355. The data have been re-
presented here in terms of absolute stress values and also in terms of the ratios between stresses and the 
parent metal yield strength. 

 

Figure C. 17 – Co-ordinate systems (image) 
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Mises Stress - Single pass weld
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Figure C. 18  

Transverse stress - Single pass weld
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Figure C. 19 
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Through thickness stress - single pass weld
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Figure C. 20–  
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Longitudinal stress - single pass weld
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Figure C. 21 
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Mises stress - two-pass weld
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Figure C. 22  

Transverse stress - 2-pass weld
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Figure C. 23 
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Through thickness stress - 2-pass weld
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Figure C. 24 

Longitudinal stress - 2-pass weld
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Figure C. 25 
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Mises stresses relative to parent metal yield strength
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Figure C. 26 

Transverse stresses relative to parent metal yield strength
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Figure C. 27
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Through thickness stresses relative to parent metal yield strength
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Figure C. 28  

 

Longitudinal stresses relative to parent metal yield strength
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Figure C. 29 
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Elastic strain distribution across single-pass laser weld at half-depth
(Weld centre-line at x  = 100 mm)
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Figure C. 30  
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