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H.1 Introduction 

The application of deterministic fracture mechanics assessment procedures to the prediction of fitness-for-
purpose requires the use of data that are often subject to considerable uncertainty.  The use of extreme 
bounding values for the relevant parameters can lead, in some circumstances, to unacceptably over-
conservative predictions of structural integrity.  An alternative approach is to use reliability methods to allow 
for the uncertainties in the parameters and to assess the probability of failure of structures containing flaws.  It 
should be noted that the question of the required reliability or safety margin for a particular application 
depends on the consequences of the failure and requires an overall risk assessment to be carried out. 

The procedures described in Sections 6 - 8 are, with the exception of the treatment of fracture toughness 
data, deterministic.  The input data are treated as a set of fixed quantities and the result obtained is unique to 
these data.  Different forms of a result can be obtained but in all cases a comparison of the result with a 
perceived critical state is performed.  Since the perceived critical state is dependent on choice of analysis, and 
contains an inherent degree of conservatism, it is best regarded as a limiting condition rather than critical. 

In this section, methods of probabilistic defect assessment are described which enable the probability of 
failure to be calculated for a given set of parameters and their corresponding statistical distribution.  In 
addition, a method based on the use of recommended partial safety factors on input parameters for a range of 
target failure probabilities is presented.   

H.2 Applications in Fatigue Assessment 

From the very beginning fatigue assessments have considered  fatigue resistance variability (dispersion) by 
the statistical treatment of the fatigue test results and the use of a design S-N curve so that in practice, no 
sample failure may be expected (see 7.2.1.4). But variability is a characteristic not only of the fatigue 
resistance. Many other parameters considered in the fatigue assessment present a large variability such as, 
loads, stress calculations, etc … 

The aim of this annex is to provide a review of the reliability principles and of the probabilistic approach which 
allows all known and possible to model variables used in fatigue assessment to be taken into account and to 
determine the failure probability during a selected life time span. Both approaches are considered, S-N curve 
and crack propagation assessment methods. 

The following areas are considered: 

• safety philosophy 

• statistical treatment of data 

• probabilistic approach 

• semi-probabilistic format 

• risk based inspection (RBI) 

H.2  Safety philosophy 

Many different design philosophies have been developed over the years. Depending on the grade of accuracy 
in defining the fatigue life approach for specific structures and components several methods are available. The 
choice of the proper design approach is mostly driven by the risk for human lives and economic reasons: the 
need is to prevent human life losses and to minimize  production and  maintenance costs by guaranteeing the 
required level of safety. The failure criteria to be considered during a design is defined from the acceptable 
probability level of failure, which implies  knowledge of the probability distributions of the various parameters 
involved  and the consequences with respect to economic or human life losses. 
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H.2.1 Safe life design 

This design strategy is based on the assumption that initially the structure is free of imperfections. No regular 
monitoring in service is specified. When components need to maintain their integrity for a certain amount of 
cycles during a limited service time designing the components for an infinite life would lead to an extremely 
heavy and inefficient construction. Therefore, the assessment can be performed  by calculating a Miners sum 
or an equivalent stress range. When using Miner's sum (see 7.3 – route 1, 2 or 3), the allowable value,Du, is 
defined as the value which would be expected to cause  failure at the desired lifetime, for example: 

Du = 0.5  on a 20 years life time 

When using the equivalent stress amplitude or range depending of the applied route, (see 7.6.1.3.2), the 
allowable fatigue stress level is defined, in the same way, as the stress which would be expected to cause the 
failure at the desired lifetime (see Figure H. 1:). 

 
Log (Maximum stress or stress range) 

Log (Cycles) 
Ni  Desired 
fatigue life

σi  allowable 
stress 

 

Figure H. 1: The Safe-Life approach 

Inherent to the limit of the safe-life approach is the a priori assumption that no damage is present on the 
structure during the entire service life: making such assumption will bring to a design where if a crack is 
present there is no inspection program defined to reveal such damage. For example, rotorcraft structures 
were designed with safe-life methodologies and they typically fail by unexpected fatigue cracking. 

H.2.2 Fail safe design 

The goal of this design philosophy is to build a structure that even if a component is cracked,  failure would not 
produce the catastrophic lost of the complete structure. This design strategy is based on statically over-
determined (hyperstatic) or redundant structures No regular monitoring in service is provided. In case of a fatigue 
failure, redistribution of forces provides an emergency life, so that the failure can be detected and repaired. 

For fail-safe designs a fatigue analysis shall be performed for the elements of a multiple load path remaining 
after the rupture of one path by mean of Miner sum and crack propagation calculations.  

When using Miner's sum (see 7.3 – route 1, 2 or 3), Du is defined as the value which would be expected to 
cause the failure at the desired lifetime, for example: 

Du = 0.5  on a 20 years life time 

When using crack propagation (see 7.3 – route 4), the failure criteria is given by a critical crack length, for 
example: 

acr = 1/3 of a tube circumference 

acr = crack length so that KI = KIC 
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For example, the aircraft industry tried to create wings and fuselages structures with a preferential crack path: 
the crack is forced to move on a predefined path by the use of crack arresters. They also have the advantage 
to prevent the cracks from propagating to a dangerous length before that the scheduled inspections will reveal 
the presence of the defect. 

H.2.3 Damage tolerance design 

A structure is defined damage tolerant when even in presence of damage due to corrosion, impact or fatigue, 
the operating life will not be affected: the damaged structure can sustain the loads without catastrophic failure 
before the damage would be found during the scheduled inspections. Regular monitoring in service is specified. 

The fatigue fail-safe design concept has taken a step forward by assuming that the time needed to nucleate a 
crack is zero. The strategy is based on the assumption that a previously identified critical section contains a 
flaw or crack. So the design is based on the use of fracture mechanics to calculate the life cycles until failure 
From the number of life cycles, regular inspection intervals are derived. The dimension of such a flaw is taken as 
the biggest defect which cannot be identified by the needed inspection methods. Damage tolerance achieves 
the desired level of safety by using three distinct elements: 

1. Damage limit: the maximum damage that the structure is able to sustain under limit load conditions. 

2. Damage growth: the interval of damage propagation from the detection value to the damage limit. 

3. Inspection program: a schedule of periodic inspections is set up to achieve timely detection of 
damage. 

The maximum allowable damage that the structure can sustain at a critical fail-safe level is the key to the 
level of damage growth and inspection needed to ensure damage detection. The assessment is based on 
the residual strength diagram as a function of the crack length (Figure H. 2). 

 Pres 
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adt acr a0 

Pd 

P0 

Pu Unsafe
Damage 
tolerance 

Residual strength

Crack length

Safe 

 

Figure H. 2: Residual strength diagram 

The residual strength can be defined in terms of force, Pres, which the structure can still sustain. The relation 
between residual strength and crack length is: 

)a(fPres =  (H. 1) 

where: 

for an unaffected structure (a=0), the residual strength is equal to Pu, the ultimate load at which the 
construction fails because of plastic collapse. 
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for the critical crack length (a=acr), the load which the structure has to sustain once the needed safety 
factor s is applied, is equal to the maximum design load Pd which is higher that the “normal” operating 
load of the structure: Pd = s Pu  

for a defect a0 (missed by the employed inspection methods), the residual strength is equal to P0  

for the minimum value of the defect (a=adt) for which the component needs to be repaired or replaced, the 
residual strength is equal to Pdt  

The corresponding dimension of the defect is adt , and therefore Pdt value, is set up with a satisfactory balance 
between production and maintenance costs and safety. 

It is now possible to evaluate the number of cycles required to reach the maximum allowable dimension of the 
crack adt, starting from the initial value a0 (see 7.3 - route 4). 

H.3 Statistic and safety principle 

The reliability analysis required that the random variable distributions are known. Practically the  distribution 
characteristics used are the following: 

• mean value 

• standard deviation (Stdv) 

• coefficient of variation (CoV) 

But the real variable distribution of the "whole family" is neither known. Only we are able to obtained estimated 
distribution characteristics from samples of limited sizes. The estimated values are random variables from 
which safe values can be calculated when their distributions are known. Two different approaches exist, 
tolerance limits and prediction limits. 

H.3.1 Mean, standard deviation estimation 

Various formulae can be found to estimate the mean and standard deviation of a set of data [1]. The more 
commonly used ones are given here:  

H.3.1.1 Mean 

Measurements or test results are given in term of Yi values versus fixed Xi values, such as number of cycles 
versus stress ranges. 

When Y is a random variable for X fixed, the mean value of n values of Y is given by: 

n

Y
Y

i
mean

∑=~
 (H. 2) 

H.3.1.2 Standard deviation 

When Y is a random variable for X fixed, the standard deviation s of n values of Y is given by: 

( )
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 (H. 3) 



FITNET FFS- MK 7– Annex H FITNET MK 7

 

H-6 © FITNET 2006– All rights reserved
 

H.3.2 Tolerance limits 

The safe value of a variable is obtained from its probability distribution by the determination of the limits 
between which it is stated that at least p % of the values lies with a confidence probability of γ. A tolerance 
limit can thus be regarded as a confidence limit on a confidence limit. 

When the analysed parameter is normally distributed, the lowest expected real value is given by: 

Xmin = X~ – k s~  (H. 4) 

where: 

Xmin  minimum expected value 

X~   estimated mean value of X from the sample 

s~   estimated standard deviation of X from the sample 

k  coefficient corresponding to the selected exceeding probability and confidence level 

The confidence level can be expressed by: 

prob{ X~ – k s~  < X – Ks} = γ  (H. 5) 

where 

X real mean value of the "whole family" 

s real standard deviation value of the "whole family" 

K coefficient corresponding to the selected exceeding probability 

To illustrate, for fatigue it is often considered for design that the safe level corresponds to a probability of 
survival (exceeding probability) of 95% with a confidence level of 75% [4]. In such case K corresponds to a 
survival probability for the "whole family" of 97.5 %. 

ASTM [2] provides in tables of k versus: 

n  number of data 

p  exceeding probability in percent 

γ  confidence level probability 

Referring S-N curves, the safe design S-N curve constant CD, using the ASTM table, is given by: 

log(CD) = log(C)mean – k slogC (H. 6) 

H.3.3 Prediction limits 

The safe values of the mean and standard deviation are obtained by considering their confidence interval at a 
given probability level p, i.e., the interval of values in which the real value is expected to be with a probability 
equal to p. 

H.3.3.1 Mean value, mean curve 

It has been demonstrated that the distribution of the estimated mean value of a normally distributed variable 
can be determined from the following variable: 

V

mmnT ~
~ −

=  (H. 7) 
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which follows a Student distribution [3] and where: 

m  real mean value 

m~   estimated mean value 

V~   estimated variance 

n  number of data 

So the real value is, for a given probability of confidence γ, within the confidence interval defined as follow: 

( ) ( )
n

stYY
n

stY meanmeanmean

~
1-n ,~~

1-n , ~ γγ +≤≤−  (H. 8) 

where t(γ,n-1) is the two sides Student distribution at (n-1) degrees of freedom and s~ the estimated standard 
deviation of Y. 

When the relationship between Y and X is bi-dimensional, such as for the S-N curves, the formula is 
determined by a regression of the observed variable Y versus the different values of the fixed variable X. In 
case of the S-N curves, the regression log(N) function of log(ΔS), allows to determine the values of m and of 
the mean of log(C). In view of simplification, in many cases, the variable m is not considered random and the 
confidence interval is only determined and applied to log(C). 

Note: The regression has to be done log(N) function of log(ΔS) as the tests are performed with ΔS fixed and 
log(N) is the random variable. Doing the opposite, log(ΔS) function of log(N), may lead to erroneous values. 

H.3.3.2  Standard deviation 

The distribution of an estimated standard deviation of a normally distributed variable can be determined from 
the following variable: 

V
VnX
~)1( −

=  (H. 9) 

which follows a chi-square distribution [3] and where: 

V  real variance value 

V~   estimated variance 

n  number of data 

So the real value is, for a given probability of confidence γ, within the confidence interval defined as follow: 
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 (H. 10) 

where χ2(γ,n-1) is the chi-square distribution at (n-1) degrees of freedom. 

H.3.3.3 Lowest expected value 

When the analysed parameter is normally distributed, the lowest expected real value is given by: 

Xmin = X~ – k s~  (H. 11) 
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where: 

Xmin  minimum expected value 

X~   estimated mean value of X 

s~   estimated standard deviation of X 

k  coefficient corresponding to the selected exceeding probability and confidence level 

The value k corresponding to an acceptable risk level of probability (1-α), the minimum bound of the mean 
confidence interval and the maximum bound of the standard deviation confidence interval of probability γ is 
then given by: 

( )
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2

1

γχ
αγ n

n
tk  (H. 12) 

where: 

t(γ , n-1) is the two sides Student distribution 

χ2(β , n-1) is the chi-square distribution at (n-1) degrees of freedom 

Φ(α) is the cumulative normal distribution 

For S-N curve determination, the IIW (International Institute of Welding) [4] recommends α = 0.95 and 
γ = 0.75. 

H.3.4 Coefficient of variation 

In probabilistic approach another parameter is defined to characterize the random variable dispersion, the 
coefficient of variation V: 

m
sV =  (H. 13) 

where: 

s standard deviation 

m mean 

When a random variable can be written, which is often the case [5]: 

B = Π(Bi) (H. 14) 

the coefficient of variation of B is given by: 

VB = 1)1( 2 −+Π BiV  (H. 15) 

For example, if we consider the reference stress range ΔSR at a hot spot, it can be written that: 

ΔSR = B ΔSdeterminist        and       B = Π(Bi) (H. 16) 

and B is a random variable modelling all uncertainties occurring in the determination of stresses such as: 

B1 environmental and operational conditions 
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B2 evaluation of the shape of the long term histogram 

B3 loads applied to the structure 

B4 modelling of the structure 

B5 workmanship 

H.4 S-N curve assessment method (Routes 1,2 and 3) 

The S-N curve assessment method corresponds to Routes 1, 2 and 3 (see 7.3). 

H.4.1 Probabilistic approach 

The probabilistic approach evaluates the probability that a structural detail has failed at the end of a  specified 
service life time taking into account all the uncertainties and safety margin of the fatigue analysis. In the 
probabilistic approach, the cumulative fatigue calculation uses the mean values of extreme loads during the 
service time, the mean experimental S-N curve and the mean Miner sum Du  at failure. The risk of failure is 
expressed by a limit state function g, capacity minus demand so that: 

if g < 0 the detail failed 

if g > 0 the detail in safe 

if g = 0 the detail is at the limit state  

The limit state function can be written in various manner such as: 

in terms of Miner sum    g = Du - D 

in terms of life time    g = T – TS 

where: 

Du  capacity = Miner sum for failure 

D  demand = Miner sum resulting from the material strength and service conditions 

T  capacity = life time resulting from the material strength and service conditions 

TS  demand = design service time 

A probability distribution pVi is associated to each variable used for the stress of the histogram calculation 
(loads and dimensions) and pDu to Du or pTs to TS. In the following, we shall consider the limit state function 
expressed in terms of life time (T and TS) [6]. The same procedure can be followed for the state function 
expressed in terms of a Miner's sum. The long term stress range histogram can be often defined by a 2 
parameter Weibull law of shape factor ξ and characteristic value w [6]: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=Δ
ξ

w
SSF exp)(  (H. 17) 

where: 

( ) ξ/1ln R

R

p
Sw

−

Δ
=  (H. 18) 

ΔSR is the stress range at a probability pR to be of exceeded. 

The time at failure is then given by: 
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 (H. 19) 

where: 

the S-N curve is given by: ΔSm N = C 

f   is the mean frequency of the cycles in Hz 

Du is the Miner sum at failure 

Γ is the Gamma function 

H.4.1.1 Failure probability direct calculation 

Probability theory allows the combination of several probability distributions pVi to calculate the probability 
distribution PT of T. Knowing the 2 probability distributions pT and pTs, the probability of the risk of failure is 
given by: 

{ } ∫ ∫
∞

−=<−
 

0 

Ts 

0 
10 dTpdTpTTprob TSTsS  (H. 20) 

which is illustrated in Figure H. 3 by the hatched area. 

 

 

time
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Figure H. 3 : Probability distributions and failure domain 

Due to the need to combine the probability distributions of the variables entering in the stress range and Miner 
sum calculation, the determination of the probability of failure by integration is difficult and not really 
practicable during the design process. Therefore another way to calculate the failure probability has been 
developed based on the safety index. 

H.4.1.2 Probability calculation using the safety index 

When the limit state function g is normally distributed, the safety index β, when known, allows to calculated 
easily the failure probability by the following formula: 

prob{ g < 0 } = Φ(−β) (H. 21) 

where Φ is the cumulative normal distribution. 

Two different safety index formulations have been developed: Cornel index, Hasofer-Lind index. 
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H.4.1.2.1 Cornel safety index 

The Cornel safety index considers that the limit state function is expressed by the difference of 2 parameters, 
the capacity and the demand normally distributed. Considering the fatigue limit state function in terms of time, 
the Cornel safety index is given by: 

)(

)(
22
TsT

S

ss

TT

+

−
=β  (H. 22) 

where: 

STT  ,   mean value of T and TS 

s2
T , s2

Ts  variance of T and TS 

The mean value of T is calculated in the same way than with the deterministic method, but using the mean 
values of the variables and the mean S-N curve, and not the design curve 

Each variable with uncertainties used for the calculation of T is assumed normally or log-normally distributed 
and a coefficient of variation is defined which allows to calculate the standard variance sT of T as given in 
H.3.4. 

If the Cornell safety index is easy to calculated it presents some inconvenient: 

• the coefficient is not robust versus the limit function format, for example, the two formula given in terms of 
T or D may not give the same value of β, all variables being the same. 

• some variables cannot be considered normally distributed, in particular long term extreme values which 
are often exponential or Gumbell distributed. 

H.4.1.2.2 Hasofer-Lind safety index 

Due to the Cornel safety index inconvenient, the more commonly used safety index is the Hasofer-Lind index, 
defined as: 

)G(X  X  allfor   min i∈= XX tβ  (H. 23) 

where: 

Xi independent normalised random variables obtained from the original xi variables by a Rosenblatt  
 transformation 

G(Xi) = 0  limit state function 

This index can be geometrically illustrated as the minimum distance from the multidimensional space origin to 
the limit state surface as shown in Figure H. 4. 
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G(Xi) = 0

X1

X2

X3

β

failure domain

safe domain

 

Figure H. 4: Hasofer-Lind safety index in a 3 dimensions space 

For the fatigue assessment the limit state function G can be expressed by: 

G = T - TS (H. 24) 

T and TS being calculated as given previously. 

This safety index is robust versus the limit state function format, but it requires the use of a specific software 
type FORM/SORM (First Order Moment / Second Order Moment), which is easy to obtain today. 

H.4.2 Semi-probabilistic approach 

The probabilistic approach, which defines the acceptable structure dimensioning through an acceptable 
probability of failure during the service time span, leads to a design implicit format procedure which is not 
practicable for a designer. 

To solve this difficulty and maintain the probabilistic approach improvements, the semi-probabilistic format has 
been developed. It corresponds to a simple formulation similar to the deterministic method but with a clear 
identification of the safety margin attached to each variable entering in the fatigue assessment process [7]. 
This format allows the use of a level of safety attached to each random variable used in the cumulated fatigue 
calculation. 

H.4.2.1 Semi-probabilistic format 

The loads to be considered for the stress calculation are the mean values of loads during the service time 
increased by multiplication by a partial safety factor γi: 

Fdesign = γi Fmean (H. 25) 

The S-N curve is at a given distance below the mean experimental curve, i.e.: 

log(Cdesign) = log(Cmean) – kSN Stdv (H. 26) 

where: 

Stdv  standard deviation of log(C) 

kSN  safety margin in term of standard deviation of log(C) 

The corresponding partial safety factor attached to the constant C is so: ).(10 StdvSNk
SN =γ  
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The Miner sum is also affected by a partial safety factor γD (greater than 1): 

D

mean
design γ

D
D =  (H. 27) 

Then the fatigue assessment is performed following the same procedure than the deterministic approach as 
given in section 7.3. 

 

Note: In some standards, the given partial safety coefficient may be applied to an extreme value yet 
including a safety margin with respect to the mean value. It is generally the case for material strength for 
which standards define minimum guaranteed values. 

In the automotive industry it is often defined the 90%-driver which means that only 10% of the measurable 
spectra are higher than this one (let us call it “characteristic-spectrum”), which is supposed to enter the Miner-
calculus. However, the stress ranges of the characteristic 90% design spectrum must be multiplied with the 
partial safety factor of the load side. In steel construction the used spectra for design have a return period of 
~1week (Eurocode 1 & 3) which does not also correspond to a mean level. 

 

H.4.2.2 Partial safety factor definition 

The partial safety factor can be determined by the following formula: 

γ = 1 + k V (H. 28) 

where V is the coefficient of variation of the considered parameter: 

mean value
deviation standard

=V  

When the random variable is normally distributed, the probability to be greater for loads, lower for resistance, 
than the mean value is given by: 

pi = 1 - Φ(ki)   Φ: cumulative normal distribution 

This formula allows to adjust the safety margin of each variable to: 

• the selected safety level (97.5% of non failure, k = 1.96, 99.9% of non failure, k = 3.1) 

• the level of knowledge of the uncertainty level of this variable by the value of V. 

But the selection of the k and V values do not allow to directly obtain the selected global probability of failure 
of the structure. To do so it is necessary to calibrate the partial safety factors of all formula used to determine 
the structure component dimensions. 

H.4.2.3 Partial safety factor calibration 

The adjustment of the partial safety factors γi attached to the random variables to obtain the selected global 
probability of failure of the structure is performed by a calibration process [9] which requires 3 steps: 

• definition of the code safety target index βT, safety level to be ensured versus the application area 

• calibration of the partial safety factors γi for each rule considered alone 

• code calibration as a whole system, ensuring the coherence between the safety levels of all rules 
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The process is based on optimisation methods using the probabilistic approach (the dimensioning formula, the 
limit state function) and a penalty function with constraints. 

The calibration process starts by the selection of: 

• the target and minimum safety index (βT , βmin), 

• the acceptable ranges of the partial safety factors (γi)min  and (γi)max, 

• a first set of partial safety factors {γi} as defined in H.4.2.2. 

• selection of the limit state functions GP attached to the various dimensioning procedures 

• selection of the penalty function Pf for the optimisation procedure. 

Then an iteration is performed to determine the calibrated set of partial safety factors as follows: 

1. calculation of the dimensions of the structure components using the code formula with the {γi} 

2. calculation of the safety indexes βp using a limit state function GP and a reliability software such as 
FORM/SORM type 

3. calculation of the penalty function Pf 

4. verification of the optimisation (Pf minimum and constraints verified). 

If the optimisation is not verified a new set of partial safety factors {γi} is selected and the iteration is renewed 
from 1. The obtained set of {γi} is considered acceptable when Pf is minimum, the constraints verified and the 
reliability indexes βp as well as the most likely failure points relative to the several design cases are close to 
each others within 5% interval. 

H.4.3 Random variable modelling 

H.4.3.1 Probabilistic approach 

For the probabilistic approach, the first step is to identify the parameters with uncertainties and to define their 
probability distribution. In general the load and strength variables are characterized by their mean, and the 
uncertainties, such as dimensions or modelling, are characterized by a bias and a variability expressed by a 
coefficient of variation. No standard can be considered existing yet as the probabilistic methods are used in 
R&D or rules development only. Example of data can be found in the marine field. An illustration is provided 
by the Bureau Veritas recommendation for steel ship fatigue analysis [4] and are given Table H. 1. 

Parameter Random variables Distribution Mean / Bias V 

 

Reference stress 

range 

ΔSR = B ΔSmean 

ΔS: computed mean ref stress 

B = Bη BH BC BW 

  Bη: Sea states description 

  BH: Ship response on waves 

  BC: FEM stress computation 

  BW: Workmanship 

lognormal 

 

lognormal 

" 

" 

" 

1.00 

calculated 

0.90 

0.85 

1.10 

0.90 

0.2 to 0.4 

calculated 

0.4 to 0.6 

0.1 to 0.3 

0.1 to 0.5 

0.1 to 0.3 

 

Courbe S-N 

Kp (1st slope – m = 3) lognormal 1.342*1013 0.438 
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 2 slopes K'p (2nd slope – m = 5) 

Nq (change of slope) 

1.633*1017 

107 

Miner sum BDu lognormal 1.0 0.3 

Table H. 1: Random variables, distributions and characteristics 

Always difficulties exist to fix the mean/bias and V values which is illustrated by the data of the Table H. 1 
where for V limits are given instead of one value. In particular discussions are still important with respect to 
the Miner sum at failurethat varies strongly versus the load history irregularity [9]. Also other publications will 
show that other distribution laws can be acceptable, such as Gumbell for the ship response on waves instead 
of lognormal. The second step is to fix the acceptable probability level of safety. There is not yet enough 
return experience to give acceptable value in different industrial fields. 

In marine, some applications have been performed on offshore platforms and ships [5], and with the generally 
accepted probability distributions in this industry area, the value of β lies between 1.5 and 3. 

H.4.3.2 Semi-probabilistic format 

For the semi-probabilistic approach, the first step is also to identify the parameters with uncertainties and for 
each of them provide the associated partial safety factors. The list of the uncertain parameters and the 
associated partial safety factors depends of the code or standard. 

An illustration is given in Table H. 2 extracted from the Bureau Veritas rules for fatigue verification of steel 
ships [7]. 

Values  

Variables 

 

Symbol General Details at stiffener 
ends 

Hull girder still water bending moment γS1 1,00 1,00 

Hull girder wave bending moment γW1 1,05 1,15 

Static water pressure γS2 1,00 1,00 

Wave water pressure γW2 1,10 1,20 

Strength γR 1,02 1,02 

Table H. 2: Partial safety factors for fatigue verification 

These partial safety factors have been calibrated with respect to scantling with the previous rules for steel ship 
classification and return experience of inspections of ships with and without fatigue cracks. 

H.5 Crack propagation assessment method (Route 4) 

The crack propagation assessment method corresponds to Routes 4 (see 7.3). 
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H. 6  Applications in Fracture Assessment  

The probabilistic procedure described in this section has been developed to calculate two different failure 
probabilities, PF: 

(a) Probability of failure, defect size given by NDE. 

(b) Probability of failure, defect not detected by NDE. 

The procedure uses two different limit state functions, ( )g X : 

( ) ( , , )FAD FAD IC y FAD rg X g K a f Kσ= = −    (H. 29) 

g a L LLr y U r r( , , ) maxσ σ = −  (H. 30) 

These limit state functions are based on the FITNET 'Known YS - Known UTS' continuous yielding FAD only 
(Option 1).  Then, to calculate the probability of failure, a multi-dimensional integral has to be evaluated: 

[ ]P g X f x dxf x
g X

= < =
<

∫Pr ( ) ( )
( )

0
0

 (H. 31) 

( )xf x is a known joint probability density function of the random vector X.  This integral is very hard 
(impossible) to evaluate, by numerical integration, if there are many random parameters.   

H 6.1 Random parameters 

Within the chosen procedure, the following parameters are treated as random parameters: 

a) Fracture Toughness 

b) Yield Strength 

c) Ultimate Tensile Strength 

d) Defect Size given by NDE 

e) Defect not detected by NDE 

f) Defect Distribution 

These random parameters are treated as not being correlated with one another.  The parameters can follow a 
normal, log-normal, Weibull or some special distributions (for the flaw size). 

H6.1.1 Fracture toughness 

The fracture toughness can follow a normal, log-normal or Weibull distribution. The normal probability density 
function has the following form: 

f K
K

I
KIC

I KIC

KIC

( ) exp= −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
2

1
2

2

σ π

μ

σ
 (H. 32) 

where μKIC
 is mean and σKIC

 is standard deviation. 
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The log-normal probability density function has the following form: 

f K
K

K
I

I

I( ) exp
ln( )

= −
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
2

1
2

2

σ π

μ
σLogNor

LogNor

LogNor

 (H. 33) 

where μLogNor  and σLogNor  are the log-normal distribution parameters. They are related to the log-normal 
distribution parameters as follows: 

μ μ σLogNor LogNor= −ln( ) ( )KIC

1
2

2  (H. 34) 

σ
σ
μLogNor

K

K

IC

IC

= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ln 1  (H. 35) 

The Weibull probability density function has the following form: 

f K
k K K

I
I

k
I

k

( ) exp=
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

−

θ θ θ

1

 (H. 36) 

where θ  and k are  scale and shape parameters of the Weibull, respectively. 

The normal distribution parameters μKIC
and σ KIC

are related to the Weibull distribution parameters as 

follows: 

( )μ
θ

KIC kk
= Γ 1  (H. 37) 

( ) ( )σ
θ

KIC k kk k
= −⎡

⎣⎢
⎤
⎦⎥

2
2 1 22

1
Γ Γ  (H. 38) 

where Γ(z) is the gamma function, defined by the integral: 

( )Γ z t e dtz t= − −
∞

∫ 1

0

.  (H. 39) 

This non-linear system of equations (H. 37)-(H. 38) is solved using a globally convergent method with line 
search and an approximate Jacobian matrix. 

H.6.1..2 Yield Strength and Ultimate Tensile Strength 

The Yield strength and Ultimate tensile strength can follow a normal, log-normal or Weibull distribution.  These 
are accorded the same treatment as fracture toughness data discussed in 0. 

H6.1.3 Defect size given by NDE 

The defect size given by NDE can follow a normal, log-normal or exponential distribution. For the treatment of 
data and distribution parameters, using a normal a log-normal distribution, see Section H.3.1 above. 
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The exponential probability density function has the following form: 

f a a( ) exp( )= −λ λ  (H. 40) 

where λ  is the exponential distribution parameter. The mean value μa  (equal to the standard deviation, σa , 
for this distribution) and is related to λ  as follows: 

μ σ
λa a= =
1

 (H. 41) 

H6.1.4 Defect Not Detected by NDE 

The defect not detected by NDE is treated as a deterministic parameter in the analysis. 

H6.1.5 Defect Distribution 

The defects can follow a normal, log-normal, exponential distribution and accorded the same treatment as 
described in Section H.3.1. 

H6.2 Calculation of Failure Probabilities 

As mentioned in Section 0, the failure probability integral  (H. 31) is very hard to solve using numerical 
integration. Instead, the following numerical algorithms are included within the procedure: 

• Simple Monte Carlo simulation  

• First-order reliability method (FORM) 

H6.2.1 Simple Monte Carlo Simulation 

MCS is a simple method that uses the fact that the failure probability integral can be interpreted as a mean 
value in a stochastic experiment.  An estimate is therefore given by averaging a suitably large number of 
independent outcomes (simulations) of this experiment. 

The basic building block of this sampling is the generation of random numbers from a uniform distribution 
(between 0 and 1).  A simple algorithm will repeat itself after approximately 2.103 to 2.109 simulations and is 
therefore not suitable to calculate medium to small failure probabilities. Once a random number, u, between 0 
and 1, has been generated, it can be used to generate a value of the desired random variable with a given 
distribution.  A common method is the inverse transform method.  Using the cumulative distribution function 

( )xF x , the random variable would then be given as: 

x F uX= −1 ( )  (H. 42) 

To calculate the failure probability, one performs N deterministic simulations and for every simulation checks if 
the component analysed has failed (i.e. if g(X) < 0).  The number of failures are NF, and an estimate of the 
mean probability of failure is: 

P
N
NF MCS

F
, =  (H. 43) 

An advantage with MCS, is that it is robust and easy to implement into a computer program, and for a sample 
size N → ∞, the estimated probability converges to the exact result.  Another advantage is that MCS works 
with any distribution of the random variables and there are no restrictions on the limit state functions. 
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However, MCS is rather inefficient, when calculating failure probabilities, since most of the contribution to PF 
is in a limited part of the integration interval. 

H6.2..2 First-Order Reliability Method (FORM) 

FORM uses a combination of both analytical and approximate methods, when estimating the probability of 
failure. First, one transforms all the variables into equivalent normal variables in standard normal space (i.e. 
with mean = 0 and standard deviation = 1).  This means that the original limit state surface g(x) = 0 then 
becomes mapped onto the new limit state surface gU(u) = 0. 

Secondly, one calculates the shortest distance between the origin and the limit state surface (in a transformed 
standard normal space U).  The answer is a point on this surface, and it is called the most probable point of 
failure (MPP), design point or β-point.  The distance between the origin and the MPP is called the reliability 
index βHL. In general, this requires an appropriate non-linear optimisation algorithm.   

Then one calculates the failure probability using an approximation of the limit state surface at the most 
probable point of failure.  Using FORM, the surface is approximated to a hyperplane (a first order/linear 
approximation). 

The probability of failure is given as: 

[ ]P g uF FORM Linear HL, Pr ( ) ( )= < = −0 Φ β  (H. 44) 

[ ] ( )P g uF SORM Quadratic HL i HL
i

N

,
/

Pr ( ) ( )= < ≈ − −
−

=

−

∏0 1
1 2

1

1

Φ β κ β  (H. 45) 

Φ(u) is the cumulative distribution function in standard normal space and κi is the principal curvature of the 
limit state surface at the most probable point of failure (MPP). FORM is more computationally efficient 
compared to MCS.  Using the implementation within FITNET, quite accurate results can be obtained for failure 
probabilities between 10-1 to 10-15.  A disadvantage is that the random parameters must be continuous, and 
every limit state function must also be continuous.  

H6.3  Semi-probabilistic approach 

Partial safety factors are factors which can be applied to the individual input variables in a design equation to 
give the given target reliability without having to carry out full probabilistic calculations. 

H6.3.1 Partial safety factors determination 

The overall partial safety factor for load effects is the ratio of the design point value to the value assumed to 
represent the loading, and the overall partial safety factor on resistance effects is the ratio of the value chosen 
to represent resistance effects to the design point value. However, no unique solution for partial safety factors 
exist and the same target reliability level can be achieved by different combinations of factors. 

H6.3..2 Recommended values of partial safety factors 

The partial safety factors to be applied in assessments depend both on the target reliability required and on 
the scatter or uncertainty of the main input data, namely fracture toughness, stress level, flaw size and yield 
strength. Partial safety factors for given target reliabilities and different degrees of variability of the input data 
are given in this part of the procedure.  The target reliability levels chosen correspond to the four conditions 
defined in Table H. 3 and an additional high reliability level, corresponding to a failure probability of 10-7, 
representative of very high structural integrity requirements as would be applied to highly critical components.  
The failure probabilities of 0.23, 10-3, 7x10-5, 10-5 and 10-7 correspond to target reliability index values of 
β = 0.739, 3.09, 3.8, 4.27 and 5.2, respectively. 

 



FITNET FFS- MK 7– Annex H FITNET MK 7

 

H-20 © FITNET 2006– All rights reserved
 

Failure 
consequences 

Redundant 
Component 

Non-redundant 
Component 

Moderate 2.3 x 10-1 10-3 

Severe 10-3 7 x 10-5 

Table H. 3: Target failure probability 

Partial safety factors to achieve the required reliability have been derived using first order second moment 
reliability analysis methods for different coefficients of variation of stresses, flaw sizes, fracture toughness and 
yield strength.  For stress levels, coefficients of variation of 0.1, 0.2 and 0.3 with a normal distribution are 
considered with a COV (Co-efficient of Variation = standard deviation/ mean) of 0.2 representing dead load or 
residual stress effects and a COV of 0.3 representing live load effects.  For the purposes of determining partial 
safety factors the results are derived in terms of different COV values so that for application purposes it is 
necessary to know both the best estimate (mean) value of defect size and the standard deviation to determine 
the appropriate COV.  Weibull and lognormal distributions were adopted for fracture toughness data with 
coefficients of variation of 0.2 and 0.3 and a lognormal distribution for yield strength with a coefficient of 
variation of 0.10. 

The resulting recommendations for partial safety factors to be applied to the best estimate (mean) values of 
maximum tensile stresses and flaw sizes, and to the characteristic (i.e. minimum specified) value of toughness 
and yield strength, are given in Table H. 4 It should be noted that the partial safety factors on fracture 
toughness are applicable to mean minus one standard deviation values as an approximate estimate of lowest 
of three. It is recommended that sufficient fracture toughness tests should be carried out to enable the 
distribution and mean minus one standard deviation to be estimated satisfactorily. 

Partial factors on yield strength have little effect other than at high Lr values when plastic collapse is the 
dominant mechanism and hence the material factors already in use for EuroCode 3 on yield strength are 
adopted for consistency. For partial safety factors on stress, the values for β = 3.8 are chosen as 1.35 and 1.5 
for stress COVs of 0.2 and 0.3 to represent dead and live load respectively, and to be consistent with 
EuroCode 3. It must be recognised that the partial safety factors will not always give the exact target reliability 
indicated but should not give a probability of failure higher than the target value.  The recommended partial 
safety factors give ‘safe’ results for the target reliability over the whole range. 

The analyses and recommendations given above are based on the assumption that failure will occur when an 
assessed defect gives rise to a point which falls on the failure assessment diagram, whereas, in practice it is 
often found that the diagram gives safe predictions rather than critical ones.  Including these modelling 
uncertainties in the calculations of partial factors will lead to a modified set of factors.  However, it is not 
intended that these modified factors be used for general safety assessments and since further work is 
required prior to their implementation they are not covered in any further detail here. 

 

p(F) 2.3x10-1 p(F) 10-3 p(F) 7x10-5 p(F) 10-5 p(F) 10-7  

β = 0.739 β = 3.09 β = 3.8 β = 4.27 β = 5.2 

Stress (COV)σ γσ γσ γσ γσ γσ 

Extreme 01 1.05 1.2 1.25 1.3 1.4 

Dead+Res 0.2 1.1 1.25 1.35 1.4 1.55 

Live 0.3 1.12 1.4 1.5 1.6 1.8 

Flaw size (COV)a γa γa γa γa γa 

 0.1 1.0 1.4 1.5 1.7 2.1 

 0.2 1.05 1.45 1.55 1.8 2.2 
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 0.3 1.08 1.5 1.65 1.9 2.3 

 0.5 1.15 1.7 1.85 2.1 2.5 

Toughness, K (COV)K γK γK γK γK γK 

 0.1 1 1.3 1.5 1.7 2.0 

(min of 3) 0.2 1 1.8 2.6 3.2 5.5 

 0.3 1 2.85 NP NP NP 

Yield strength (COV)M γM γM γM γM γM 

(on min spec.) 0.1 1 1.05 1.1 1.2 1.5 

Table H. 4: Recommended partial factors for different combinations of target reliability and variability 
of input data based on failure on the FAD. 

Notes: γσ is a multiplier to the mean stress of a normal distribution 
 γa is a multiplier to the mean flaw height of a normal distribution 
 γK is a divider to the mean minus one standard deviation value of fracture  

toughness of a Weibull distribution 
 γM is a divider to the mean minus two standard deviation value of yield strength  

of a log-normal distribution 

H 7 Inspection programme 

Timely detection of damage is the ultimate control in guarantying structural integrity. From an economical 
point of view the maintenance inspections are costly and time consuming: the trend of the industry is to look 
for a design solution which permits to expand the N value, also called time of damage H; commonly the time 
of inspections, I, is set at the half of the damage time. 

The underdevelopment RBI (Risk Based Inspection) approach allows to optimised the inspection periodicity 
using the probabilistic approach. 

H7.1 RBI principle 

The RBI principle is to determine the probability of crack and structure loss function of operation time, to 
define an inspection procedure, a strategy when a fatigue crack is observed during an inspection (to do 
nothing, to repair, to replace the component), to calculate the costs of the inspection, the repair, the 
replacement, the structure loss and to optimise the total cost on the structure life design time [10], [11]. 

With respect to fatigue the failure probability can be expressed using the safety index β versus time: 

ln(T)s
ln(t))Tln(β(t) −

=  (H. 46) 

where: 

T   mean life time obtained from the fatigue assessment 

t  passing time 

sln(T)  standard deviation of ln(T) 

Fixing an upper acceptable limit of probability of failure pmax, inspection is due when prob = Φ(−β) reaches 
this upper limit (Figure H. 5) 
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Figure H. 5: Failure probability versus time and due inspections 

When an inspection is performed, the ratio of observed failures divided by the number of verified details 
provides an estimation of the real probability of failure which allows to adjust the cumulative fatigue calculation 
assumptions and method and the β calculation assumption and procedure. After adjustment, a new curve of 
probability of failure versus time can be determined  from which the next inspection time can be fixed (Figure 
H. 5). The optimisation is obtained by selecting the maximum acceptable probability of failure, the inspection 
procedure (inspection method accuracy), and the decision criteria of doing nothing, repairing, replacing 
components. Total cost is determined from the inspection, repair, replacement, structure loss costs and a 
repair, survival and failure event tree. 

H. 7.2 Maintenance interval increase strategy 

The maintenance intervals are interspersed to guarantee the safety of the structure and to get the most of the 
damage tolerance of the material. To obtain such result it is necessary to increase the time of damage H. A 
way is to improve the inspection procedures in order to decrease the detectable dimension of the defect, 

da (Figure H. 6). 
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Figure H. 6: Time of damage versus the detectable defect dimension da  

Decreasing the detectable defect size da  to 0
da , the allowable time of damage H becomes ∗H . Another way 

to increase H is to use redundant structures or arresters. Those structures will make possible respectively the 
creation of multiple load paths and the stop of the crack growth. By using arresters a bigger defect dimension 
is permitted. An illustration is given in Figure H. 7 
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Figure H. 7: Time of damage H after inserting arresters  

The last solution is to improve the damage tolerance of the material as illustrated in Figure H. 8. 

Cycles

H

Crack Length

H0

adt

ad

Cycles

H

Crack Length

H0

adt

ad

 

Figure H. 8: Time of damage H by optimising the damage tolerance 

The life prediction of a component, obtained with the damage tolerant methodology, could be affected by 
several factors. The crack length at the inspection time could be different from the crack length calculated with 
fracture mechanics principles due to many uncertainties still present. In particular we shall mention the 
dimension of the initial and of the final crack length, the proper definition of the loading spectrum, the material 
data used to obtain the growth rate, the method of integration of such data and the inspection technology. 

 

H 8 Application in the Creep Regime 

H 8.1 Determination of creep rupture life  

The main input data required for assessing structures prone to creep damage are the rupture time, defined as a function of 
the temperature T and stress σ. Experiments indicate that the rupture time shows significant scatter and hence it should 
be considered as a random variable.  

A lognormal distribution can be selected to describe the randomness of the rupture time as follows:  

Ω+= cc δμτln  ,                   (H. 47) 

where τ is the random variable - rupture time, Ω is the normalized Gaussian distribution function N(0;1) and μc 
and δc are the mean value and standard deviation of the rupture time, expressed in the logarithmic base, 
respectively.  
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The total accumulated creep damage Dc can be obtained using the life fraction rule. Assuming that the 
operation of the investigated structure is broken into a series of blocks [σi;Ti] during which the load/stress σi 
and the temperature Ti are sensibly constant , the total accumulated damage is then given by the following 
equation: 

∑
=

Δ
=

n

i iii

i
c T

t
D

1 );(στ ,                  (H. 48) 

where Δti is the time during which the structure is subjected to the stress σi and temperature Ti. Values τi are 
given by equation (H.47).  Substituting equation (H.47) into equation (H.48) and introducing the relation 
tri = exp[μc(σi;Ti)] lead to: 
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The total creep damage accumulation Dc must be less than unity (Dc < 1) for rupture not to occur within the 
investigated structure. The probability that Dc is less than 1 can be expressed as follows: 
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where N is a normalized Gaussian distribution function and Z is defined by the following equation: 
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As the creep damage cannot exceed a value of 1, the probability P(Dc≥1) reduces to the probability P(Dc = 1) 
and hence using equation (H.50), the probability of rupture is given by: 

).()1( Ω== NDP c                   (H. 52) 

H 8.2 Stochastic creep crack growth 

In the case of a cracked structure operating in the creep regime, the creep crack growth rate can be correlated 
satisfactorily in terms of the creep fracture parameter C* using the following relation: 

cn
c CA

dt
da *)(= .                    (H. 53) 

Material parameters Ac and nc can both be considered as random variables. However, experimental results 
show that the parameter nc does not exhibit significant scatter and hence it is generally considered as a 
constant. The scatter in the random variable Ac is usually described by a lognormal distribution as follows: 

Ω+= AAcA δμln ,                    (H. 54) 

where Ω is the normalized Gaussian distribution function N(0;1) and μA and δA is are the mean value and 
standard deviation of the logarithm value of Ac, respectively.  
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When several of the inputs to the creep crack growth assessment are considered as random variables (e.g. 
initial crack size, creep rupture time, creep crack growth constant Ac), the determination of the distribution 
function of the crack size becomes a complex mathematical expression that is hard to evaluate using 
numerical integration. In this case, the use of suitable numerical methods, such as Monte Carlo techniques, is 
required. However, if a sensitivity analysis of the key inputs to the creep crack growth assessment shows that 
the scatter in the creep crack growth constant Ac has a dominant effect, then the other input data can be 
assumed constant and a simplified procedure can be employed. In this case, equation (H.53) can be 
integrated numerically and the crack size a(t1) at  time t1 can be derived as follows: 
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The probability of the crack size a(t1) being less than a given crack size af is given by: 
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where the random variable ZA has the normalized Gaussian distribution function N(0;1) and is defined by the 
following relation: 

A

f
A

taa
Z

δ
)](ln[ln 1−

= .                  (H. 58) 

Equation (H.57) defines the distribution function of the crack size at time t1. If the calculation is performed for 
different values of time t1 then the distribution function of crack size becomes a function of time. Furthermore, 
the probability of exceeding the crack size af is P(a > af) = 1 – N(ZA). If af is selected as the critical crack size, 
the probability of fracture is given by the value 1 – N(ZA). 
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