4 Symbols and abbreviated terms

For the purpose of this document the following the symbols and abbreviations generally apply. However, some sections may contain further symbols and abbreviations due to their special use.

- *A* constant in fatigue crack growth relationship
- *A* surface area
- *A* material constant (creep crack growth)
- *A*₁ area of rectangle which demarcates flaw
- *A*₂ full load bearing area containing flaw
- A_c crack area
- *B* section thickness in plane of flaw
- *B* specimen thickness
- B' effective section thickness (2a + 2p)
- *B'* material constant (cyclic crack growth)
- *B*^{*} normalised T-stress
- B_{min} minimum remaining thickness of a corroded spherical shell
- *B_n* net specimen thickness
- *B*₀ original, measured, pipe or vessel wall thickness, or wall thickness as defined in the original design code
- *B_{ss}* sub-size Charpy specimen thickness
- *C* constant in creep crack propagation equation
- C material constant (cyclic crack growth)
- C^{*} parameter defining creep crack propagation rate
- C^{\star} steady state crack tip parameter
- \overline{C}^* mean estimate of C^* during transient early cycles
- *C*₁ constant in the stress corrosion crack growth relationship
- C_D discharge coefficient
- *C(t)* transient crack tip parameter
- D diameter

D'	constant in creep strain equation
D_{SM}	mean shell diameter
D_c	accumulated creep damage
D_c^{surf}	total surface creep damage
ΔD_c	increment of creep damage
Ε	Young's (elastic) modulus
Ε'	elastic modulus corrected for constraint conditions $E' = E$ for plane stress. $E' = E/(1 - v^2)$ for plane strain
E_{RT}	elastic modulus at room temperature (say 20 °C)
E_{ET}	elastic modulus at the elevated temperature
E_{I}	electrical energy per unit length of weld
E^{I}	E for plaine stress, and $E/(1-v^2)$ for plaine strain
F_{AR}	reduction factor to allow for loss of load-bearing area due to presence of a flaw in a tubular joint
F_a, F_K, F_Y	reserve factors on flaw size, toughness and yield strength
F^L	reserve factor on load, pressure etc
F^{K}	reserve factor on characteristic fracture toughness
F^{R}	reserve factor on yield strength
F^{a}	reserve factor on flaw size
F _e	generic term for yield limit load
F _{eH}	limit load defined at upper yield strength
F_e^M	yield limit load for mismatched weldments
$F_e^{\ B}$	yield limit load for base material
F_p	limit load defined by proof strength
G	constant in tubular joint stress intensity factor solutions
Н	specimen half-length
Н	crack-opening area (COA)
H'	constant in tubular joint stress intensity factor solutions
H_c	creep component of crack-opening area (COA)
H_e	elastic component of crack-opening area (COA)
J	a line or surface integral that encloses the crack front from one crack surface to the other, used to charaterize the local stress-strain field around the crack front

- J_0 initial value of elastic-plastic crack tip parameter for combined loading
- $J_{0.2BL}$ resistance to crack extension expressed in terms of J at 0.2 mm crack extension offset to the blunting line
- *J*^s value of *J* for secondary stresses alone
- J_c value of J at either:

unstable fracture; or onset of arrested brittle crack or pop-in.

This term only applies where $\Delta a_0 < 0.2$ mm offset to the blunting line

- J_e value of J determined using an elastic analysis
- J_m value of J at first attainment of maximum force plateau
- J_{mat} material toughness measured by *J*-methods
- $J_{mat}(\Delta a)$ characteristic toughness in units of J for ductile tearing analysis
- J_u value of J at either:
 - a) unstable fracture; or
 - b) onset of arrested brittle crack or pop-in
 - This term only applies where $\Delta a_0 > 0.2$ mm offset to the blunting line
- ΔJ range of J-integral
- *K* stress intensity factor
- *K*₂ stress intensity factor following unload
- $K_{BK,\sigma}$ variable amplitude fatigue strength factor
- $K_{BK,\tau}$ variable amplitude fatigue strength factor
- *K*_{*I*} applied tensile (mode I) stress intensity factor
- *K_{Ic}* plane strain fracture toughness
- *K*_{*li*} stress intensity factor
- *K*_{*lid*} stress intensity factor
- *K*_{*Ip*} stress intensity factor due to pre-load
- $K_I^{bending}$ contributions to K_I of through-wall bending stresses
- K_l^p stress intensity factor due to primary stresses $\left[=(Y\sigma)_n \sqrt{(\Pi a)}\right]$
- $K_l^{pressure}$ contributions to K_l of pressure-induced membrane stresses
- K_I^s stress intensity factor due to secondary stresses $\left[= (Y\sigma)_{e} \sqrt{(\Pi a)} \right]$

FITNET FFS – MK7– Section 4

$K_I^{(p+s)}$	stress intensity factor due to primary and secondary stresses
K _{ISCC}	critical stress intensity factor for stress corrosion cracking
K _{II}	mode II linear elastic stress intensity factor
K _{IIC}	critical value of $K_{\rm II}$ at onset of brittle fracture in mode II
K_{IIp} , K_{IIs}	values of $K_{\rm II}$ due to primary and secondary stresses, respectively
<i>K</i> ₁₁₁	mode III linear elastic stress intensity factor
K_{IIIp} , K_{IIIs}	values of $K_{\rm III}$ due to primary and secondary stresses, respectively
K_d	technological size factor
$K_{e\!f\!f}$	effective linear elastic stress intensity factor in mixed mode loading
K_f	stress intensity factor at failure
K_g	notional <i>K</i> value after flaw extension Δa_g
K _{mat}	material toughness measured by stress intensity factor
$K_{mat}(\Delta a)$	characteristic toughness in units of K for ductile tearing analysis
K^{c}_{mat}	creep toughness (TDFAD)
K^{c}_{mat}	Value of <i>K_{mat}</i> modified by constraint
$K^{c}_{mat}(\Delta a_{j})$	Value of K_{mat} (Δa_j) modified by constraint
K _{max}	maximum stress intensity factor in cycle
K _{min}	minimum stress intensity factor in cycle
K_p^{s}	effective stress intensity factor used to define K_r^s
K _r	fracture ratio of applied elastic K value to K_{mat}
K_s	factor for the effect of cyclic strain hardening or softening
K_S	surface roughness factor
K^p	stress intensity factor due to primary load
K^{s}	stress intensity factor due to secondary loading
K_{ε}^{s}	effective stress intensity factor defined from elastic-plastic strain field
K_{σ}^{s}	effective stress intensity factor defined from elastic-plastic stress field
ΔK	stress intensity factor range
ΔK_I	cyclic range in K_{I}
$\Delta K_{e\!f\!f}$	effective stress intensity factor range

- ΔK_o threshold stress intensity factor range below which fatigue crack growth (or corrosion fatigue crack growth) does not occur
- L attachment length
- *L_r* ratio of applied load to yield or proof load
- L_r load ratio $\mathbf{P} / \mathbf{P}_{\mathrm{L}}$
- L_r^{max} cut-off on TDFAD
- L_r^{max} maximum permitted value of L_r
- $L_r(L)$ value of L_r when structure is loaded to its limiting load.
- M mismatch ratio across weldment given by R_e^{W}/R_e^{B}
- *M* bulging correction factor
- $M_{\rm ai}, M_{\rm ao}$ applied in and out of plane moments for tubular joints
- $M_{\rm ci}, M_{\rm co}$ fully plastic moments for cracked tubular joints calculated for in and out of plane loads
- $M_{\rm m}, M_{\rm b}, M_{\rm km}, M_{\rm kb}$ stress intensity magnification factors
- $M_{\rm m}$ *, $M_{\rm b}$ * factors used in calculating $M_{\rm m}$ and $M_{\rm b}$
- $M_{\rm s}, M_{\rm T}$ stress magnification factor
- M_{σ} mean stress sensitivity
- N strain hardening exponent
- *N* fatigue life
- *N*_c number of corrosion flaws in a colony of interacting flaws
- ΔN increment in N
- P primary stress
- P load
- P_L limit load
- *P_a* applied axial load on tubular joint
- *P_b* primary bending stress
- $P_{b,l}$ primary bending stress due to locally applied bending loads
- *P_c* collapse load for cracked tubular joint
- *P_e* yield limit pressure
- *P_f* fluid pressure

P_f	failure pressure of a corroded pipe or vessel				
P_f	probability of K_{mat} being less than estimated				
P_m	primary membrane stress				
$P_{m,a}$	primary membrane stress due to global axial loads				
$P_{m,b}$	primary membrane stress due to global bending moments				
$P_{m,p}$	primary membrane stress due to pressure loading				
P_{nm}	failure pressure of combined adjacent corrosion flaws n to m, formed from a colony of interacting flaws				
P_0	failure pressure of plain unflawed pipe or pressure vessel				
$P_{\rm sw}$	safe working pressure of the corroded pipe or pressure vessel				
$P_{1,2,,N}$	failure pressures of individual corrosion flaws forming a colony of interacting flaws				
Q	Normalised hydrostatic stress used as a constraint parameter				
Q	secondary stress				
Q	material constant (cyclic crack growth)				
Q^p , Q^s	Value of Q for σ^p , σ^s stresses, respectively				
Q_b	secondary bending stress				
Q_c	length correction factor for corrosion flaws				
Q_i	length correction factor of an individual flaw forming part of a colony of interacting corrosion flaws				
Q_m	secondary membrane stress				
Q_{mf}	mass flow through an equivalent rectangular crack				
Q_{nm}	length correction factor for a flaw combined from adjacent flaws n to m in a colony of interacting corrosion flaws				
Q_{β}	factor to allow for increased strength observed in tubular joints at $\beta > 0.6$				
R	stress ratio [ratio of minimum (σ_{min}) to maximum (σ_{max}) algebraic value of the absolute stress level ($k_{tm}.P_m + k_{tb}.P_b + Q$)]				
R	stress intensity factor ratio (= $K_{\rm min}$ / $K_{\rm max}$)				
Ŕ	length in estimate of C^*				
R [′]	parameter used in creep crack propagation equation				
R_F	flow stress				
R_F^{M}	mismatch flow stress of weldment				

R_N	Notch radius
R_P	proof strength
R_Z	average roughness of the surface
R _a	surface roughness of crack
R_e	general term for yield or proof strength
R_{el}	lower yield strength
R_i, R_o	Internal and external radii, respectively
R_m	ultimate tensile strength
R_p	cyclic plastic zone size
<i>R</i> _s	reserve strength factor = $\frac{P_{\rm f}}{P_{\rm o}}$
R _{eH}	upper yield strength or limit of proportionality
R_e^W	yield or proof strength of weld metal
$R_e^{\ B}$	yield or proof strength of base metal
R_m	ultimate tensile strength
R _σ	stress ratio (2CD)
S	stress range or, for variable amplitude loading, the equivalent constant amplitude stress range
S _{nom}	nominal membrane stress for Level 1 analysis
S_r	ratio of applied load to flow strength load
S_y	minimum 0.2% proof stress
Т	Elastic stress parallel to the crack, used as a constraint parameter
Т	temperature
T^p , T^s	Value of T for σ^p , σ^s stresses, respectively
T_c	creep exclusion temperature
T_k	temperature term describing the scatter in Charpy versus fracture toughness correlation
T_0	temperature for a median toughness of 100 MPa m in 25 mm thick speciments
T _{ref}	reference temperature
T_1	temperature at pre-load
T_2	temperature at re-load

FITNET FFS – MK7– Section 4

- T_{27J} temperature for energies of 27 J measured in a standard 10 mm \times 10 mm Charpy V specimen
- T_{40J} temperature for energies of 40 J measured in a standard 10 mm \times 10 mm Charpy V specimen
- *U_T* total area under load-displacement curve
- *U_c* creep area under load-displacement curve
- *U_e* elastic area under load-displacement curve
- *U_p* Plastic area under load vs load-point displacement record
- V volume
- *V* parameter treating interactions between primary and secondary stress
- W width (in a- dimension) of fracture toughness specimen
- W plate width in plane of flaw
- *W*_c crack opening width
- X factor relating δ_I and K_I to account for constraint and work hardening capability variation
- X_i Polinomial coefficients (I=0-6)
- *X_{nm}* corrosion flaws interaction parameters
- *Y* stress intensity factor correction
- Y_m, Y_b stress intensity correction factors for membrane and bending stress
- Y_{wm}, Y_{wb} stress intensity correction factors for the weld location for membrane and bending stress
- $(Y_{\sigma})^{p}$ primary stress intensity factor correction function
- $(Y_{\sigma})^{s}$ secondary stress intensity factor correction function
- Z circumferential angular spacing between projection lines in the analysis of corrosion flaws
- Z elastic follow-up factor
- *a* half flaw length for through-thickness flaw, flaw height for surface flaw or half height for embedded flaw
- a crack size
- *a*₀ initial crack size
- $a_{BK,\sigma}$ degree of utilization
- $a_{BK,\tau}$ degree of utilization
- *a*_G constant
- *a_M* constant
- $a_{R,\sigma}$ constant

a_d	constant			
a_f	final flaw size			
a _{eff}	effective crack size based on elastic analysis			
$a_{e\!f\!f\!\sigma}$	effective crack size based on elastic-plastic stress field			
$a_{e\!f\!f\!\sigma}$	effective crack size based on elastic-plastic strain field			
a_g	crack size after growth			
a_i	initial flaw size			
a_{min}	crack size below which the crack growth rate is assumed to be constant			
Δa_i	crack growth corresponding to initiation			
à	crack growth rate			
$\dot{a}_{\rm c}$	rate of crack propagation in height direction due to creep			
\overline{a}	effective flaw parameter for Level 1 fracture assessment			
\overline{a}_{i}	initial value of effective flaw parameter for fatigue analysis			
\overline{a}_{\max}	maximum value of effective flaw parameter for fatigue analysis			
$\overline{a}_{\mathrm{m}}$	tolerable flaw parameter for Level 1 fracture assessment			
Δa	increment in a			
$\Delta a_{ m g}$	limit of tearing flaw extension			
$\Delta a_{\rm j}$	intermediate value of tearing flaw extension			
$\Delta a_{ m o}$	notional extension of flaw defining tearing initiation			
b	exponent of time in creep strain equations			
b_M	constant			
b_G	constant			
b_0	(W-a $_0$) in fracture toughness specimen			
С	half flaw length for surface or embedded flaws			
$2c_{b}$	surface length of crack at breakthrough			
$\dot{c}_{ m c}$	crack growth rate in length direction due to creep			
Δc	increment in <i>c</i>			
d	deviation from true circle due to angular misalignment			

$d_{ m c}$	depth of corroded region
$d_{\rm c}^{\rm surf}$	surface creep damage accumulated in a cycle
$d_{e\!f\!f}$	effective diameter
d_i	depth of an individual corrosion flaw
d_m	effective combined depth of interacting corrosion flaws
d_n	effective combined depth of interacting corrosion flaws
d_{nm}	effective depth of combined flaws from n to m
$d_{1,2,\text{etc}}$	depth of 1 st , 2 nd , etc. corrosion flaws
е	axial misalignment (eccentricity or centre line mismatch)
f	frequency of fatigue loading cycle
fw,σ	fatigue strength factor
fw,т	fatigue strength factor
f_c	total factor of safety in analysis of corrosion flaw = f_{c1} . f_{c2}
fcl	modelling factor in analysis of corrosion flaw
f_{c2}	original design factor in analysis of corrosion flaw
f_{f}	friction factor for flow through crack
f _{fmax}	effective maximum friction factor for flow through crack
f _{scc}	factor of safety with respect to stress corrosion cracking ($f_{scc} > 1.0$)
$f_{\phi}, f_{\mathrm{w}}, g$	correction terms in stress intensity factor for elliptical flaws
$f(L_r)$	function of L_r defining FAD or CDF
g _{ij}	Normalised elastic stress field ahead of a crack
h	weld leg length
k	factor for the weld zones
k_m	stress magnification factor due to misalignment
k_t	stress concentration factor
k _{tb}	bending stress concentration factor
$k_{t.HS}$	hot spot stress concentration factor in tubular joint
$k_{t.IPB}, k_{t.OPB}$	in and out of plane stress concentration factors in tubular joints
k _{tm}	membrane stress concentration factor
l	flaw length (sometimes defined as 2c)

- *l* distance from axially misaligned joint to load or extremities of region of angular misalignment (shortest distance = l_1)
- *l* material constant (cyclic crack growth)
- *l'* generalized crack length (length of surface, buried or through thickness crack) or equivalent length of through thickness crack after recharacterization
- $l'_{\rm L}$ length of crack which leaks at the minimum detectable rate
- $l'_{\rm L}^*$ enhanced length of crack which leaks at the minimum detectable rate
- $l_{\rm c}$ length of corroded region measured parallel to the axis of a cylindrical vessel or pipe
- *l*'_c limiting generalized crack length
- l_i length of an individual corrosion flaw forming part of a colony of interacting flaws
- l_m effective combined length of interacting corrosion flaws
- l_n effective combined length of interacting corrosion flaws
- *l_{nm}* effective longitudinal length of a flaw combined from adjacent flaws n to m in a colony of interacting flaws
- *l*′_r length of crack at rupture
- *l_{iotal}* total longitudinal length of a colony of interacting flaws and the spacing between them
- $l_{\rm w}$ length of weld
- *m* parameter defining influence of constraint on fracture toughness
- *m* exponent in flaw growth law
- *m*' Beremin modal parameter
- m_q exponent in the calculation of F_{AR}
- *n* exponent of stress in creep strain equation
- *n* creep stress exponent
- n,m refer to the nth and mth flaw in a series of corrosion flaws 1... N_c ;
- *n*(*scc*) exponent in the stress corrosion crack growth relationship
- n_i number of cycles in stress spectrum at stress range $\Delta \sigma_i$
- n_{σ} support factor
- n_{τ} support factor
- *p* shortest distance from material surface to embedded flaw
- *p'* internal pressure

p(F)	probability of failure
q	exponent in creep crack propagation equation
q_o	fraction of total load range for which crack is judged to be open
r	distance from crack tip
r	mean shell radius or radius of round bar or bolt
r ₀	external shell radius
r _h	radius of hole
r _i	internal shell radius
r _m	mean shell radius
r_p	size of the cyclic plastic zone
r ^p crack	cyclic plastic zone size at the crack tip
S	distance between embedded flaws or longitudinal spacing between adjacent corrosion flaws
Si	longitudinal spacing between adjacent flaws forming part of a colony of interacting corrosion
S_m	distance between interacting corrosions flaws
<i>S</i> _n	distance between interacting corrosions flaws
t	specimen thickness
t	thickness of structural section
t	time (days, weeks, months or years as appropriate)
t_0	service life to date
t_R	creep rupture life
$t_{R(ref)}$	time to creep rupture at reference stress
t_a	time accumulated from initial start-up of plant
t _{cd}	time to failure of plant by bulk creep rupture, measured from initial start-up
t_{cyc}	time to reach steady cyclic state
t_d	required life of plant, measured from initial start-up
t_{ff}	time to failure by unstable fracture, measured from initial start-up
t _g	time required for the crack to propagate by an amount $\Delta a_{_{\rm g}}$
t_h	hold time at high temperature
t _i	crack incubation time, prior to commencement of creep crack growth

flaws

- *t*_i initiation time
- *t_{ix}* incubation period corresponding to crack growth x
- *t_m* maximum allowable time at temperature
- *t_r* rupture time
- *t_{red}* redistribution time
- *t_s* desired future service life
- *t*_w weld throat thickness
- $t(2c_b)$ time to breakthrough of a part wall flaw
- t(T) time to achieve specific creep strain at proof stress at temperature T
- $t(l'_{\rm c})$ time to grow crack to limiting length
- $t_{\rm r}(\sigma)$ time to rupture at the appropriate temperature and at a stress, σ
- Δt time span
- $\Delta t_{\rm d}$ time to detect a leak
- w specimen width
- x a/W
- *y* 1-a/W
- *y* height of peaking due to angular misalignment
- *z* measure of position through the thickness
- z_0 through thickness depth of tensile residual stress zone
- *z_r* through thickness depth of repair
- Δ_T total displacement
- Δ_c creep displacement
- Δ_e elastic displacement
- Δ_p plastic displacement
- Σ ratio of flow strengths at re-load and pre-load conditions
- Φ complete elliptic integral of the second kind
- $\phi_{\rm s}$ factor used in the collapse analysis of spheres
- ϕ circumferential angular spacing between adjacent corrosion flaws
- Ω degree of bending in tubular joints

$\Omega_{Tot}, \Omega_{Ax}, \Delta_{Ax}$	$arOmega_{\sf IPB},$ total, axial, in plane and out of plane degrees of bending in				
Ω_{OPB}	tubular joints				
α	parameter defining influence of constraint on fracture toughness				
α	angular change at misaligned joint				
α	coefficient of thermal expansion				
α"	function of <i>a</i> , <i>c</i> , <i>B</i> and <i>W</i> used in calculation of collapse stresses				
$\alpha(\lambda')$	bulging factor				
β	normalised constraint parameter				
β	ratio of brace diameter to chord diameter in a tubular joint				
β,γ	material constants (creep crack initiation)				
β_Q	normalized constraint parameter on Q				
β_T	normalized constraint parameter on T				
ß'	plasticity correction factor, $\beta' = 1$ for plane stress, $\beta' = 1$ for plane strain				
β"	factor determining state of stress				
eta_{sx}	factor used in collapse analysis of cylinders				
eta_{sy}	factor used in collapse analysis of cylinders				
$eta_{ m r}$	reliability				
γ	ratio of chord radius to chord wall thickness in a tubular joint				
γ'	estimate of K_r^s for through-wall self-balancing stress				
γσ, γa, γK, γ	$_{\delta}, \gamma_{Y}$ partial coefficients on stress, flaw size, fracture toughness in terms of <i>K</i> , fracture toughness in terms of CTOD and yield strength, for safety factor treatment				
γс	safety factor for use with creep data				
δ	crack tip opening displacement (CTOD)				
$\delta_{0.2\text{BL}}$	resistance to crack extension expressed in terms of CTOD at 0.2mm crack extension offset to the blunting line				
δ_I	applied CTOD				
δ_c	CTOD at either:				
	a) unstable fracture; or				

This term only applies where $\Delta a_0 < 0.2$ mm offset to the blunting line

- δ_e elastically calculated value of CTOD
- δ_g CTOD at limit of permitted tearing
- δ_i critical crack tip opening displacement (creep crack initiation)
- δ_{ij} Kronecker's delta
- δ_{ix} crack opening displacement corresponding to initiation of creep crack growth of extent x
- δ_m CTOD at first attainment of maximum force plateau
- δ_{mat} material toughness measured by CTOD method
- $\delta_{mat}(\Delta a)$ characteristic toughness in units of δ for ductile tearing analysis
- δ_r fracture ratio using CTOD parameters
- δ_u CTOD at either:
 - a) unstable fracture; or
 - b) onset of arrested brittle crack or pop-in.
 - This term only applies where $\Delta a_0 > 0.2$ mm offset to the blunting line
- ε strain
- $\varepsilon_{\rm Y}$ yield strain, i.e. strain at $\sigma_{\rm Y}$
- \mathcal{E}_{c} accumulated creep strain
- $\dot{\overline{\varepsilon}}_{c}$ equivalent creep strain rate
- $\dot{\varepsilon}_{c}$ creep strain rate
- $\dot{arepsilon}_{{\it c,ref}}$ creep strain rate at stress $\sigma_{{\it ref}}$
- $\dot{arepsilon}_{c,ref}^{p}$ creep strain rate at stress σ_{ref}^{p}
- ε_e elastic strain at the reference stress (σ_{ref}/E)
- ε_f strain to failure of material, as measured in uniaxial creep test
- $\overline{\varepsilon}_{f}$ creep ductility
- ε_{ij} elastic-plastic mechanical strains; ij = x, y, z
- ε_{max} maximum tensile strain
- ε_p plastic strain
- $\varepsilon_{\rm ref}$ reference strain

\mathcal{E}_{ref}^{e}	elastic strain at stress $\sigma_{\it ref}$
\mathcal{E}_{ref}^{e+p}	elastic plus plastic strain at stress $\sigma_{\scriptscriptstyle ref}$
$\mathcal{E}_{ref}^{e+p+c}$	elastic plus plastic plus creep strain at stress $\sigma_{\it ref}$
\mathcal{E}_{ref}^{0}	elastic plus plastic strain at stress $\sigma^{\scriptscriptstyle 0}_{\scriptscriptstyle ref}$
$\dot{arepsilon}_{0}$	creep strain rate at stress $\sigma_{_{0}}$
$\Delta \varepsilon$	lower yield or Luder's strain
$\Delta \mathcal{E}_{c}$	increment of creep strain
$\Delta \overline{\varepsilon}_t$	total surface strain range (cyclic crack growth)
ζ	dimensionless geometrical parameter used in collapse analysis of flawed cylinders
η	homogeneous experimental calibration factor
η_p	factor used to define J from U_p
θ	parametric angle to identify position along an elliptic flaw front
θ	polar co-ordinate at crack tip
К	constant depending on boundary conditions
λ	(1+ΕΔε /R _{eH})
λ , λ ₁ , λ ₂ , e	tc. constants used in calculating stress intensity factors
$\lambda_{ m r}$	ratio to give the structural cut-off
$\lambda_{ m s}$	factor used in collapse analysis of cylinders
λ "	scaling factor on stress intensity factor, used to define γ'
μ	constant in calculating the failure pressure of a corroded sphere
μ	stress exponent in power law plasticity
v	Poisson's ratio
ξ	constant in calculating the failure pressure of a corroded sphere
ρ	allowance for plasticity interaction effects from combination of primary and secondary loadings
ρ	plasticity correction factor
$ ho_1$	a parameter used in determining ρ
ρι	parameter replacing ρ in Procedure I

- $\rho_{\rm f}$ fluid density
- σ general term for stress
- $\overline{\sigma}$ short-term flow stress
- σ^{ij} stress field
- σ_0 initial stress
- $\sigma_{0.2}$ 0.2 % proof strength
- $\sigma^{c}_{0,2}$ 0.2% creep strength
- $\sigma^{c}_{I.0}$ 1.0% creep strength
- σ_R residual stress
- σ_R creep rupture strength
- $\sigma_{\!R}{}^{\scriptscriptstyle L}$ longitudinal residual stress
- $\sigma_{R}^{L,B}$ longitudinal residual stress at bore
- $\sigma_{\!\!R}^{\ T}$ transverse residual stress
- $\sigma_{\!R}^{\ \ T,B}$ transverse residual stress at the bore
- $\sigma_{\!R}^{\ T,O}$ transverse residual stress on the outer surface
- σ_Y lower yield strength or 0.2 % proof strength
- σ'_{Y} yield strength of the material in the vicinity of the flaw
- σ_{YI} yield strength at pre-load conditions
- σ_{Y2} yield strength at re-load conditions
- σ_a applied stress
- σ_b linearized bending stress
- σ_{bc} hot spot bending stress for a cracked tubular joint
- σ_d stress at a small distance ahead of the crack tip
- σ_f flow strength
- $\sigma_{f'}$ flow strength of the material in the vicinity of the flaw
- σ_m linearized membrane stress
- σ_{max} maximum tensile stress for Level 1 analyses
- σ_{max} peak equivalent welding residual stress

-						
$O_{n,b}$	bending component of collapse stress					
$\sigma_{n,m}$	membrane component of collapse stress					
σ_{npl}	nominal stress					
σ^{p}	stress arising from loads which contribute to plastic collapse					
σ^{P}	primary stress					
σ^{r}_{max}	surface value of self-balancing residual stress for through-wall crack					
σ_r	reference value of stress at value of strain, $\boldsymbol{\epsilon},$ on stress strain curve					
σ_{ref}	reference stress used for creep and plastic collapse considerations					
$\dot{\sigma}_{\scriptscriptstyle ref}$	reference stress rate					
$\sigma^{\scriptscriptstyle 0}_{\scriptscriptstyle ref}$	initial value of the total reference stress					
$\sigma_{\scriptscriptstyle ref}^{\scriptscriptstyle cyc=l}$	reference stress for first cycle					
$\sigma^{p}_{r\!e\!f}$	reference stress for primary loading					
$\sigma_{\it ref,b}$	reference stress for pure bending					
$\sigma^{\scriptscriptstyle p}_{\scriptscriptstyle r\!e\!f\!,hom}$	homogeneous cracked body reference stress					
$\sigma_{{ m ref},m}$	reference stress for pure membrane loading					
$\sigma_{ref,m}$ σ^s	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse					
$\sigma_{ref,m}$ σ^{s} σ^{S}	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress					
$\sigma_{ref,m}$ σ^s σ^S σ_s	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment					
$\sigma_{ref,m}$ σ^{s} σ^{S} σ_{s} σ_{ij}^{sss}	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0					
$\sigma_{ref,m}$ σ^{s} σ^{S} σ_{s} σ_{ij}^{sss} σ_{u}	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength					
$\sigma_{ref,m}$ σ^{s} σ^{S} σ_{s} σ_{ij}^{sss} σ_{u} σ_{y}	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress					
$\sigma_{ref,m}$ σ^s σ^S σ_s $\sigma_s^{s s s}$ σ_u σ_y σ_{yy}	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress stress distribution normal to crack plane					
$\sigma_{ref,m}$ σ^{s} σ^{s} σ_{s} σ_{ij} σ_{u} σ_{y} σ_{yy} $\tilde{\sigma}_{yy}$	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress stress distribution normal to crack plane pseudo-stress distribution normal to crack plane					
$\sigma_{ref,m}$ σ^s σ^S σ_s $\sigma_s^{s s s}$ σ_u σ_y σ_{yy} $\tilde{\sigma}_{yy}$ σ_w	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress stress distribution normal to crack plane pseudo-stress distribution normal to crack plane applied stress on weld throat					
$\sigma_{ref,m}$ σ^s σ^S σ_s σ_s σ_y σ_y σ_y σ_{yy} σ_{yy} σ_w σ_w	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress stress distribution normal to crack plane pseudo-stress distribution normal to crack plane applied stress on weld throat fatigue limit of the material					
$σ_{ref,m}$ g^s $σ^s$ $σ_s$ $σ_s$ $σ_s$ $σ_u$ $σ_y$ $σ_y$ $σ_y$ $σ_{yy}$ $σ_{yy}$ $σ_w$ $σ_w$ Δσ	reference stress for pure membrane loading stress arising from loads which do not contribute to plastic collapse secondary stress bending stress due to misalignment small-scale yielding stress field for T=0 ultimate tensile strength yield stress stress distribution normal to crack plane pseudo-stress distribution normal to crack plane applied stress on weld throat fatigue limit of the material applied stress range					

 $\Delta\sigma_{\it IPB}$, $\Delta\sigma_{\it OPB}$ in and out of plane bending stress ranges in tubular joint

$\Delta \sigma_{Hs,Ax}$	axial, in a	nd out of plane	e hot spot stress	ranges in tubular	⁻ joint
- 113.71	, -			J	J -

$\Delta\sigma_{\rm Hs.IPB,?}$

$\Delta\sigma_{\! m Hs.Tot}$	total hot spot stress range in tubular joint
$\Delta\sigma_{ m b}$	bending component of stress range
$\Delta\sigma_{\rm m}$	membrane component of stress range
$\Delta\sigma_{\rm nom}$	nominal stress range in tubular joint
$\Delta\sigma_{\mathrm{n.Ax}}$,	nominal axial, in and out of plane stress ranges in tubular joint
$\Delta\sigma_{\mathrm{n.IPB}}$,	
$\Delta\sigma_{ m n.OPB}$	
$\Delta\sigma'_{\rm b}$	bending stress range excluding the effects of misalignment
$\Delta \sigma_{\rm j}$	stress range in variable amplitude fatigue spectrum which is applied n_j times
τ	ratio of brace wall thickness to chord wall thickness in tubular joints
τ'	factor used in collapse analysis of cylinders
$ au_w$	fatigue limit of the material
φ	parameter used in defining ρ
χ	factor used in collapse analysis of bolts
χ	normalised stress gradient
Ψ	parameter used in defining p
$\frac{\mathrm{d}a}{\mathrm{d}N}$	flaw growth rate with cycles
$\left(\frac{\mathrm{d}a}{\mathrm{d}N}\right)_{\mathrm{f}}$	rate of crack propagation per cycle in height direction due to fatigue
$\left(\frac{\mathrm{d}a}{\mathrm{d}N}\right)_{\mathrm{c}}$	rate of crack propagation per cycle in height direction due to creep

 $\frac{\mathrm{d}a}{\mathrm{d}t}$ flaw growth rate with time

FITNET FFS – MK7– Section 4